• Title/Summary/Keyword: Elongations

Search Result 95, Processing Time 0.03 seconds

Crustal Characteristics and Structure of the Ulleung Basin, the East Sea (Japan Sea), Inferred from Seismic, Gravity and Magnetic Data (탄성파 및 중자력자료에 의한 울릉분지의 지각특성 및 구조 연구)

  • Huh, Sik;Kim, Han-Jun;Yoo, Hai-Soo;Park, Chan-Hong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.2
    • /
    • pp.95-104
    • /
    • 2000
  • Depths to four seismic sequence boundaries and the thickness of each sequence were estimated and mapped based on multi-channel seismic data in the Ulleung Basin. These depth-structure and isopach maps were incorporated into the interpretation of gravity and magnetic anomaly maps. The sediment thickness ranges from 3,000 m to 4,000 m in the central basin, while it reaches 6,000 m locally along the southwestern, western, and southeastern margins. The acoustic basement forms a northeast-southwest elongated depression deeper than 5000 m, and locally deepens up to 7,500 m in the southwestern and western margins. Low gravity anomalies along the western and southern margins are associated with basement depressions with thick sediment as well as the transitional crust between the continental and oceanic crusts. Higher gravity anomalies, dominant in the central Ulleung basin, broaden from southwest toward northeast, are likely due to the shallow mantle and a dense crust. A pair of magnetic elongations in the southeastern and northwestern margins appear to separate the central Ulleung basin from its margin. These magnetic elongations are largely dominated by intrusive or extrusive volcanics which occurred along the rifted margin of the Ulleung basin formed during the basin opening. The crust in the central Ulleung Basin, surrounded by the magnetic elongations, is possibly oceanic as inferred from the seismic velocity. The oceanic crust can be mapped in the central zone where it widens to 120 km from the southwest toward northeast. Bending of the crustal boundary in the southern part of the Ulleung Basin suggests that the Ulleung Basin has been deformed by a collision of the Phillipine plate into the Japan arc.

  • PDF

Physical Properties of Mixed ${\kappa}/{\lamda}$- and ${\kappa}/{\iota}$-carrageenan Films ((${\kappa}/{\lambda}$${\kappa}/{\iota}$-carrageenan 혼합 필름의 물성)

  • Han, Yun-Jeong;Kim, Suk-Shin
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.42-46
    • /
    • 2008
  • The physical properties of ${\kappa}/{\lamda}$- and ${\kappa}/{\iota}$-carrageenan films, mixed with ${\lamda}$- or ${\iota}$-carrageenan (${\kappa}:{\lamda}$ or ${\kappa}:{\iota}$ = 2:1, 1.5:1.5, 1.2:1.8) and with polyethylene glycol, were compared to those of ${\kappa}$-, ${\lamda}$-, or ${\iota}$-carrageenan films. The tensile strengths of the ${\kappa}/{\lamda}$- and ${\kappa}/{\iota}$-carrageenan films decreased with increasing mixing ratios of ${\kappa}/{\lamda}$- or ${\kappa}/{\iota}$-carrageenan, respectively, and were lower than those of the ${\lamda}$- and ${\iota}$-carrageenan films. The elongations and water vapor permeabilities of the ${\kappa}/{\lamda}$- and ${\kappa}/{\iota}$-carrageenan films increased with increasing mixing ratios of ${\lamda}$- and ${\iota}$-carrageenan, respectively, and were higher than those of the ${\lamda}$- or ${\iota}$-carrageenan films.

Low-Temperature Superplastic Deformation Behavior of Fine-Grained Ti-6Al-2Sn-4Zr-2Mo-0.1Si Alloy (미세 결정립 Ti-6Al-2Sn-4Zr-2Mo-0.1Si 합금의 저온 초소성 변형 거동)

  • Park, C.H.;Lee, B.;Lee, C.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.7
    • /
    • pp.544-549
    • /
    • 2009
  • This study aimed to elucidate the deformation mechanism during low-temperature superplasticity of fine-grained Ti-6Al-2Sn-4Zr-2Mo-0.1Si alloy in the context of constitutive equation. For this purpose, initial coarse equiaxed microstructure was refined to $2.2{\mu}m$ via dynamic globularization. Globularized microstructure exhibited large superplastic elongations(434-826%) at temperatures of $650-750^{\circ}C$ and strain rate of $10^{-4}s^{-1}$. It was found that the main deformation mechanism of fine-grained material was grain boundary sliding accommodated by dislocation motion with both stress exponent (n) and grain size exponent (p) values of 2. When the alpha grain size, not sub-grain size, was considered to be an effective grain size, the apparent activation energy for low-temperature superplasticity of the present alloy(169kJ/mol) was closed to that of Ti-6Al-4V alloy(160kJ/mol).

Characteristics of fatigue crack propagations with respect to the angles between rolling and tensile loading directions of steel plates (강판의 압연 방향과 인장하중 방향의 상대 각도에 따른 피로 균열 진전 특성)

  • Lee Yong-Bok;Oh Byung-Duck
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.74-80
    • /
    • 2005
  • Steel plates used for common structures are manufactured by rolling processes in general. The rolling direction traces generated during the processes have significant influences on mechanical properties and fatigue behavior of the plates. The objective of present study is to investigate those directional characteristics for the enhancement of steel structure safety. SS400 steel plates of 3 mm thickness are tested in this study, When the angles between the tensile loading direction and the rolling direction of the plates are increased, their yield strengths are increased and elongations are rather decreased. It is also shown that fatigue crack growth rates in the plates can be increased according to the changes of those mechanical characteristics. For the safety of the structures, therefore, it is critical to decrease the angles between the rolling direction and the tensile loading direction.

Effect of Scancium Content on The Hot Extrusion of Al-Zn-Mg-(Sc) Alloy (Al-Zn-Mg-(Sc) 합금의 고온가공성에 미치는 Sc 함량의 영향)

  • Kim, Jin-Ho;Kim, Jeoung-Han;Yeom, Jong-Taek;Lee, Dong-Geun;Park, Nho-Kwang
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.184-187
    • /
    • 2006
  • The effects of scandium content and extrusion parameters on Al-Zn-Mg-(Sc) alloys were examined. Three kinds of Al-Zn-Mg-(Sc) alloys with up to 0.30 wt.% Sc were prepared. The compression test was conducted to investigate the microstructure evolution during hot deformation. Despite of microstructural differences in the alloys, deformation behaviors were very similar. After extrusion at $350^{\circ}C$ with the ram speed of 15mm/sec, AA7075 showed a moderate surface quality compared with other Sc containing alloys, which was attributed to low flow stresses. AA7075 showed coarse-grained bands in surface region. With the ram speed of 1.5mm/sec at $350^{\circ}C$, the surface quality of the alloys was sound due to low friction stresses and deformation heating. As the Sc content increased, tensile strengths and elongations at room temperature improved.

  • PDF

Effects of Molecular Weight of PC on Mechanical Properties of PC/ABS Blends using High-Shear Rate Processing

  • Lee, Eun Ju;Park, Hee Jung;Kim, Se Mi;Lee, Seung Goo;Lee, Kee Yoon
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.343-348
    • /
    • 2018
  • Each of the two polycarbonates (PC) of different molecular weights was blended with acrylonitrile-butadiene-styrene (ABS) under high-shear rate processing to afford PC/ABS. Sizes of ABS dispersed phases and mechanical properties of PC/ABS blends were investigated and high-shear rate processing of PC/ABS was carried out by changing screw speed and processing time. Prepared specimens were examined by scanning electron microscope (SEM) to observe morphology changes. Sizes of ABS dispersed phases in PC/ABS blends were observed to decrease gradually as screw speeds increased. Tensile strengths and elongations of specimens were investigated by universal testing method (UTM) to study the influence of molecular weight of PC exerting on PC/ABS blends. As a result, PC1/ABS blends (PC1: higher molecular weight PC) exhibited more strengthened properties than PC2/ABS (PC2: lower molecular weight PC). The tensile strength of PC1/ABS showed an increasing tendency when the screw speed increased, and the elongation did not show a significant decrease, but increased slightly with increasing shear time at a constant screw speed of 1000 rpm.

Elevared Temperature Mechanical Properties of Mechanically Alloyed Al-4Mg Alloys (기계적합금화로 제조된 Al-4Mg기 합금의 고온 기계적성질)

  • Lee, Yong Gak;Jeon, Chae Hong;Kwun, S.I.;Yeon, Yun Mo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.3
    • /
    • pp.168-176
    • /
    • 1998
  • The mechanical properties of mechanically alloyed Al-4wt%Mg alloys dispersed with $MgAl_2O_4$ dispersoilds at room and elevated temperatures were investigated. The powders in steady state during mechanical alloying consisted of Mg-supersatu rated Al solid solution and $Al_4C_3$ which resulted from the reaction of Al with C in process control agent (methanol). The hot-extruded materials consisted of uniformly dispersed fine $MgAl_2O_4$, ${\gamma}-Al_2O_3$, $Al_2O_3$ and matrix with extremly fine substructure. Tensile specimens prepared from the extruded bars were tested at room temperature to $400^{\circ}C$ under different strain rates. The tensile strength of alloys at room temperature ranged from 500 to 594MPa. At elevated temperatures, the tensile strengths and elongations decreased with increasing temperature. Adding 3% $MgAl_2O_4$ to Al-4wt%Mg increased the tensile strength of 50MPa at rowan temperature and 20MPa at $400^{\circ}C$.

  • PDF

Characterization of Mechanical Properties in the Heat Affected Zones of Alloy 82/182 Dissimilar Metal Weld Joint (Alloy 82/182 이종금속 용접부 열영향부의 기계적물성치 특성 파악)

  • Kim, Jin-Weon;Kim, Jong-Sung;Lee, Kyung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.73-78
    • /
    • 2008
  • The paper presents the characteristics of mechanical properties within the heat affected zone (HAZ) of dissimilar metal weld between SA508 Gr.1a and F316 stainless steel (SS) with Alloy 82/182 filler metal. Tensile tests were performed using small-size specimens taken from the HAZ regions close to both fusion lines of weld, and the micro-structures were examined using optical microscope (OM) and transmission microscope (TEM). The results showed that significant gradients of the yield stress (YS), ultimate tensile stress (UTS), and elongations were observed within the HAZ of SA508 Gr.1a. This was attributed to the different microstructures within the HAZ. In the HAZ of F316 SS, however, the welding effect dominated the YS and elongation rather than UTS, and TEM micrographs conformed the strengthening in the HAZ of F316 SS was associated with a dislocation-induced strain hardening.

  • PDF

Drawing Process Design and Mechanical Properties Control for High Strengthening of CP Titanium (순수 타이타늄 고강도화를 위한 인발공정설계 및 기계적 특성 제어 기술)

  • Choi, Seong Woo;Park, Chan Hee;Lee, Sang Won;Yeom, Jong Taek;Hong, Jae Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.77-81
    • /
    • 2017
  • CP (Commercially Pure) titanium has been widely used in various industries such as in energy plants and bio-materials because of an excellent corrosion resistance and its non-toxicity to the human body. But there are limitations for usage as structural materials due to low strength. The tensile properties of CP titanium could be improved by microstructure refinement such as in a SPD (Severe Plastic Deformation) process. However, high strengthening of CP titanium wire is impossible by SPD processes like ECAP (Equal Channel Angular Pressing), HPT (High-Pressure Torsion), and the ARB (Accumulative Roll Bonding) process. The study purposes are to increase the strength of CP titanium wire by optimization of the cold drawing process and the harmonization with mechanical properties by heat treatments for the next forming process. The optimization process was investigated with regard to the design of drawing dies and the reduction ratio of cross sections. The elongations of high strength CP titanium were controlled by heat treatment.

Application of Machine Learning to Predict Web-warping in Flexible Roll Forming Process (머신러닝을 활용한 가변 롤포밍 공정 web-warping 예측모델 개발)

  • Woo, Y.Y.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.29 no.5
    • /
    • pp.282-289
    • /
    • 2020
  • Flexible roll forming is an advanced sheet-metal-forming process that allows the production of parts with various cross-sections. During the flexible process, material is subjected to three-dimensional deformation such as transverse bending, inhomogeneous elongations, or contraction. Because of the effects of process variables on the quality of the roll-formed products, the approaches used to investigate the roll-forming process have been largely dependent on experience and trial- and-error methods. Web-warping is one of the major shape defects encountered in flexible roll forming. In this study, an SVR model was developed to predict the web-warping during the flexible roll forming process. In the development of the SVR model, three process parameters, namely the forming-roll speed condition, leveling-roll height, and bend angle were considered as the model inputs, and the web-warping height was used as the response variable for three blank shapes; rectangular, concave, and convex shape. MATLAB software was used to train the SVR model and optimize three hyperparameters (λ, ε, and γ). To evaluate the SVR model performance, the statistical analysis was carried out based on the three indicators: the root-mean-square error, mean absolute error, and relative root-mean-square error.