• Title/Summary/Keyword: Elongation ratio

Search Result 389, Processing Time 0.025 seconds

Leveling of Aged Low Carbon Steel Sheets in order to Prevent Shape Defects after Stamping (시효 발생한 저탄소 냉연강판의 가공형상 불량 방지를 위한 판재 교정기술 활용)

  • Park, K. C.
    • Transactions of Materials Processing
    • /
    • v.24 no.4
    • /
    • pp.241-247
    • /
    • 2015
  • In order to prevent shape defects such as fluting and stretcher strains during press forming of aged low carbon steel sheets, roller leveling conditions for reducing yield point elongation were studied. Yield point elongations of leveled sheets were determined as a function of leveling, which is defined as the plastic fraction or the ratio of plastically deformed part in sheet thickness section to the whole thickness of the sheet. By adjusting this plastic fraction during leveling to more than 78%, yield point elongation in the leveled sheets was reduced so no fluting occurred during subsequent tangential bending. Stretcher strains can be avoided by leveling the sheet to an 84% plastic fraction condition.

Influence of Bonding Strength on Surface Pattern in Bonding of Carbon Fiber Reinforced Plastic and Metal (탄소 섬유 강화 플라스틱과 금속의 접합에서 표면 패턴에 따른 접합 강도 영향)

  • Kim, Ji-Hun;Cheong, Seong-Kyun;Kim, Joohan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.4
    • /
    • pp.430-435
    • /
    • 2017
  • The effect of the surface profile on CFRP and aluminum metal bonding was studied. A small number of steps were made on the aluminum surface, and the shear stress and elongation were measured using a shear test after bonding with an autoclave method. As the number of surface steps increased, the shear stress and elongation increased. The surface bonding strength increased because of the effect of the mechanical and chemical bonding. When the number of effective stages was exceeded, the shear strength decreased again due to the aspect ratio of the step and the reduction of the penetration effect of the resin into the groove.

A Study of Rolling Characterization on Mg Alloy Sheet (마그네슘 합금 판재의 압연특성연구)

  • Jeong, Y.G.;Lee, J.B.;Kim, W.J.;Lee, G.A.;Choi, S.;Jeong, H.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.53-56
    • /
    • 2006
  • Magnesium alloy AZ31, which processed by conventional rolling or extrusion, has high anisotropy of mechanical properties in its strength and elongation at room temperature. We compared the influence of differential speed rolling with conventional rolling process on microstructure and mechanical properties of commercial AZ31 sheet. Commercial AZ31 alloy sheets were processed with conventional and differential speed rolling with thickness reduction ratio of 30% at a various temperature. The elongation of AZ31 alloy, warm-rolled by differential speed rolling is larger than those rolled by conventional rolling. Besides, grain size and distribution on microstructure of the conventional rolled materials were coarse and inhomogeneous, on the contrary, those of the differential speed rolled were fine and homogeneous.

  • PDF

A Study on Fiber Formation and Physical Properties of Polyacrylonitrile Copolymer with Itaconic acid (이타콘산을 함유한 폴리아크릴로니트릴 공중합체의 섬유제조 및 그 물성에 관한 연구)

  • Sin, Ik Gi;Lee, Sin Hui;Park, Su Min
    • Textile Coloration and Finishing
    • /
    • v.14 no.2
    • /
    • pp.109-109
    • /
    • 2002
  • A study has been made of the dry-jet-wet spinning of PAN copolymer fibers using 60% aqueous zinc chloride solution as solvent and 25∼40% aqueous zinc chloride solution as non-solvent. The technological characteristics of this method were that small streams of dope were extruded from the die and allowed to pass through a short distance of air gap(about 10mm) before entering the spinning bath for full coagulation. This work showed the importances which coagulation condition, stretch ratio and fiber tenacity up to 10.5 g/d could be obtained with elongation of 11∼16%. Individual fibers were evaluated on the basis of density and mechanical properties such as tenacity and elongation etc.

A Study on Fiber Formation and Physical Properties of Polyacrylonitrile Copolymer with Itaconic acid (이타콘산을 함유한 폴리아크릴로니트릴 공중합체의 섬유제조 및 그 물성에 관한 연구)

  • 박수민;신익기;이신희
    • Textile Coloration and Finishing
    • /
    • v.14 no.2
    • /
    • pp.33-39
    • /
    • 2002
  • A study has been made of the dry-jet-wet spinning of PAN copolymer fibers using 60% aqueous zinc chloride solution as solvent and 25∼40% aqueous zinc chloride solution as non-solvent. The technological characteristics of this method were that small streams of dope were extruded from the die and allowed to pass through a short distance of air gap(about 10mm) before entering the spinning bath for full coagulation. This work showed the importances which coagulation condition, stretch ratio and fiber tenacity up to 10.5 g/d could be obtained with elongation of 11∼16%. Individual fibers were evaluated on the basis of density and mechanical properties such as tenacity and elongation etc.

A Study on the Softness Properties of Polyester Fabric Using Vapor Type Ozone Treatment (기상 오존처리법을 이용한 폴리에스테르직물의 유연성에 관한 연구)

  • Lee, Mun-Soo;Kwon, Yoon-Jeong
    • Fashion & Textile Research Journal
    • /
    • v.3 no.4
    • /
    • pp.362-366
    • /
    • 2001
  • We studied on the softness properties of polyester fabric by vapor type ozone processing using ozone's strong oxidation instead of 25% NaOH chemical treatment. When vapor type ozone processing was directly treated to fabrics retaining water to 40% pick up ratio, high concentration ozone was generated oxidation of 3~4% approximately in polyester fabrics and finally its softness improved. The fabric's softness effect was improved because vapor type ozone generated the highest decomposition to oxidation of surface and inter molecules. The experiment revealed that fabric's softness was improved by change of the time of vapor type ozone processing. However, tensile strength and elongation were reduced by increase in time, 60 minute was assumed as the most optimized time to minimize the reduction of fabric's tensile strength and elongation as well as maximizing the fabric's softness.

  • PDF

Warm Hydroforming Characteristics of High Strength Aluminum Tubes (고강도 알루미늄 튜브의 온간 하이드로포밍 특성)

  • 이문용;강창룡;이상용
    • Transactions of Materials Processing
    • /
    • v.13 no.5
    • /
    • pp.403-408
    • /
    • 2004
  • Hydroformability of 6061 and 7075 aluminum tube materials was studied by warm hydroforming experiments. A special tooling and heating system was designed and manufactured in order to perform warm hydroforming between room temperature and $300^{\circ}C$. The control of tube temperature for warm hydroforming was made by the control of temperature of oil medium. Warm hydroformability was analyzed by tube appearances, tube elongation and hardness values. Hydroforming characteristics of 6061 and 7075 tubes showed different temperature dependence between room temperature and $300^{\circ}C$. The difference in hydroformabilities of 6061 and 7075 at elevated temperatures was interpreted by the different sensitivity to dynamic strain aging of both aluminum materials.

Physical Properties According to the Covering Process and Heat Treatment Condition of the Thermoplastic Polyetherester Elastomeric Fibers (에스터계 열가소성 탄성 섬유의 커버링 공정 및 열처리 조건에 따른 물성 변화)

  • Kim, Jin Oh;Kim, Young Su;Park, Seong Woo
    • Textile Coloration and Finishing
    • /
    • v.33 no.3
    • /
    • pp.120-130
    • /
    • 2021
  • The condition of covering process using thermoplastic polyetherester elastomeric fibers(TPEE) was established. Two types of core yarn(TPEE, Spandex) and one type of effect yarn(PET) were used as materials to confirm the change in physical properties of covering yarn under various covering conditions. In addition, the effects of the treatment temperature on the elongation at break of covering yarn after heat treatment was analyzed. Through this analysis, it was confirmed that the elastic recovery of TPEE which is used as the core yarn was increased with the draw ratio, but decreases when it exceeds 1:2.5. And the elongation at break of the covering yarn could be increased by increasing the twist per meter of it. Additionally, it was confirmed that the elastic recovery of TPEE which is used as a core yarn, could be increased by applying heat treatment.

Seedling Emergence and Mesocotyl Elongation as affected by Temperature and Seeding Depth in Direct-seeded Rice on Dry Soil (벼 건답직파재배에서 온도 및 파종심도가 종자의 출아와 중배축 신장에 미치는 영향)

  • Lee, Chul-Won;Yun, Yong-Dae;Oh, Yun-Jin;Cho, Sang-Yeol
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.6
    • /
    • pp.534-540
    • /
    • 1992
  • Climatic condition and seeding depth affect the seedling stand and early growth in the direct-seeded rice cultivation on dry soil. This experiment was conducted to elucidate the effects of the day /night temperatures and the seeding depths on the seedling emergence and mesocotyl elongation of rice seed. Three combinations of the day/night temperatures(25/2$0^{\circ}C$ 20/15$^{\circ}C$ and 20/1$0^{\circ}C$) were employed with seeding depths 1, 3, 5 and 7cm at the Phytotron of the Crop Experiment Station in 1991. It appeared that seedling emergence ratio increased and days to seedling emergence decreased in the high temperature (25/2$0^{\circ}C$) and the deep seeding depth (5 and 7cm) condition. The seedling emergence ratio did not. show the, difference up . to the seeding depths of 3cm and below, but the ratio decreased from the seeding depths of 5cm and above. Plant height and leaf number were almost the same up to the depths of 3cm at 30 days after seeding, but those of the seeding depths of 5cm and 7cm were remarkably reduced in all temperature combinations. Mesocotyl and lower internode elongation were seen in the high temperature(25/2$0^{\circ}C$) with the seeding depths of 5cm and 7cm. In the seeding depth of 6cm, of the tested varieties, Tamjinbyeo and Odaebyeo showed the highest emergence ratio. Generally, leaves of all tested varieties appeared approximately in the soil depth of 3cm, so the reasonable seeding depth will be around 3cm in the direct-seeded cultivation on dry soil.

  • PDF

Effect of Hot Forging on the Hardness and Toughness of Ultra High Carbon Low Alloy Steel (초 고 탄소 저합금강의 경도와 인성에 미치는 열간단조의 영향)

  • Kim, Jong-Beak;Kang, Chang-Yong
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.115-121
    • /
    • 2013
  • This study was carried out to investigate the effect of hot forging on the hardness and impact value of ultra high carbon low alloy steel. With increasing hot forging ratio, thickness of the network and acicular proeutectoid cementite decreased, and than were broken up into particle shapes, when the forging ratio was 80%, the network and acicular shape of the as-cast state disappeared. Interlamellar spacing and the thickness of eutectoid cementite decreased with increasing forging ratio, and were broken up into particle shapes, which then became spheroidized. With increasing hot forging ratio, hardness, tensile strength, elongation and impact value were not changed up 50%, and then hardness rapidly decreased, while impact value rapidly increased. Hardness and impact value was greatly affected by the disappeared of network and acicular shape of proeutectoid cementite, and became particle shape than thickness reduction of proeutectoid and eutectoid cementite.