• Title/Summary/Keyword: Elongation Structure

Search Result 328, Processing Time 0.022 seconds

Blends of Silicone Rubber and Liquid Crystalline Polymer

  • Shivakumar E.;Das C. K.;Pandey K. N.;Alam S.;N.Mathur G.
    • Macromolecular Research
    • /
    • v.13 no.2
    • /
    • pp.81-87
    • /
    • 2005
  • Blends of silicone rubber (VMQ) and liquid crystalline polymer (LCP) were prepared by the melt mixing technique. Mechanical, XRD, thermal and dynamic mechanical investigations are reported for the pure silicone rubber and blends. The mechanical properties, viz. the tensile strength, tear strength and elongation at break, of the silicone rubber decreased with the addition of LCP. The SEM study on the tensile fractured surface of the blends revealed that they had a two phase structure, and that the failure was mainly due to fiber pull out, which suggests that the VMQ and LCP are incompatible in all of the proportions examined in this study. However, the FTIR study shows that there was a partial interaction between the VMQ and LCP, but which may not be sufficient to grip the fibrils under the applied load. In the XRD analysis, it was observed that the crystalline structure of the silicone rubber deteriorated in the presence of LCP. The DMA study suggested that the storage modulus of the silicone rubber was improved with the addition of LCP, due to the high modulus of the LCP phase. The thermal stability of the silicone rubber was greatly reduced by the addition of LCP, due to the latter having a thermal stability lower than that of silicone rubber.

Characteristic Evaluation Based on the Heat Treatment Conditions of Super Duplex Stainless Steel with 0.2% N as an Additive - Part 1: Mechanical Properties and Microstructure (0.2% N을 첨가한 수퍼 2상 스테인리스강의 열처리 조건에 따른 특성 평가 - 제1보: 기계적 특성 및 미세조직)

  • Ahn, Seok-Hwan;Kang, Heung-Joo;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.46-50
    • /
    • 2008
  • Super duplex stainless steel has along life in severe environments because of its strength and corrosion resistance. If 0.2$\sim$0.3% Nitrogen in aninterstitial solid solution is added, the austenite structure is reinforced. This improves the solid solution hardening and the anticorrosionability. In this study, the mechanical properties and structures of the super duplex stainless steel with the 0.2% N additive were investigated to determine the effect of various volume fractions on the austenite phase. The various volume fractions and distributions of the austenite structure in the applied test specimens were obtained by changing the heat treatment temperature and cycle. The characteristics by amounts of the $\sigma$ phase obtained from the precipitation heat treatment were alsoinvestigated. From the results, when the austenite volume fraction increases, the tensile strength decreases and elongation increases. And the $\sigma$ phase was rapidly increased by increasing the heat treatment time. When the volume fraction of the $\sigma$ phase increased, tensile strength increased.

Study on the Physical Property of PTT/Tencel/Cotton MVS Blended Yarn for High Emotional Garment (I) - Physical property of blended yarn according to yarn structure - (고감성 PTT/Tencel/Cotton MVS 혼방사 패션소재의 물성에 관한 연구 (I) - 사 구조에 따른 혼방사 물성 -)

  • Kim, Hyun Ah
    • Fashion & Textile Research Journal
    • /
    • v.18 no.1
    • /
    • pp.113-119
    • /
    • 2016
  • The evolution of spinning technology was focused on improving productivity with good quality of yarns. More detail spinning technology according to mixing of various kinds of fibre materials on the air vortex spinning system is required for obtaining good quality yarns. This paper investigated the physical properties of air vortex yarns compared with ring and compact yarns using PTT/tencel/cotton fibres. It was observed that unevenness of air vortex yarns was higher than those of ring and compact yarns, which resulted in low tenacity and breaking strain of air vortex yarns. Initial modulus of air vortex yarns was higher than those of ring and compact yarns. Yarn imperfections of air vortex yarns such as thin, thick and nep were much more than those of ring and compact yarns. These poor yarn qualities of air vortex yarn were attributed to the fasciated yarn structure with parallel fibres in the core part of the air vortex yarn. However, yarn hairiness of air vortex yarns was less and shorter than those of ring and compact yarns. Thermal shrinkage of air vortex yarns were higher than that of ring yarns, which was caused by sensible thermal shrinkage of PTT fibres on the bulky yarn surface and core part of air vortex yarns.

Creep-Induced Tension Loosening of CRT Tension Mask (크리프에 따른 CRT 텐션 마스크의 장력 이완)

  • Chung, Il-Sup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.1034-1040
    • /
    • 2003
  • Tension mask is a part of CRT type devices, which is installed right behind glass-made front panel. Numerous slits on the thin metal sheet enable the electron beams emitted from posterior gun to be focused, resulting in enhanced definition. Flattened and enlarged displays necessitate the imposition of pretension on the masks, in order to improve the robustness of display quality against vibration or impact. High temperature assembly process subsequent to pretensioning, however, degenerates creep resistance of mask material, and common mask may become susceptible to undesirable elongation due to creep. Once tensile stress becomes high enough to induce creep deformation, pretension is substantially loosened. In this study, tension mask assembly is modeled as a combined structure of beams and wire array, and a numerical simulation is attempted for pretensioning followed by high temperature process. Based on a model study, creep occurrence is found to be probable and its adverse influence is quantified. As fur maintaining high tensile force, simply increasing pretension does not seem to be helpful. Instead, the structure of frame needs to be modified somehow, or material for mask needs to be selected properly.

A Study of the Mechanical Properties of Patch-Bonded and Riveted Repairs on Cracked Al 6061-T6 alloy Structures

  • Yoon, Young-Ki;Kim, Guk-Gi;Yoon, Hi-Seak
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.55-60
    • /
    • 2000
  • A comparison of Riveted and bonded repairs, bearing and net tension failures, and Al 6061-T6 plates is presented. The results are then compared with previous papers about bonded repairs on different patch materials and shapes. Aluminum alloys, including Al 6061-T6, have a face-centered-cubic crystal structure. Under normal circumstances, these types of crystal structures do not exhibit cleavage fractures even at very low temperatures. In aluminum-base structures, the cracked plate structures are frequently repaired using mechanical fasteners-either rivets of bolts- even though patch-bonding techniques are applied to repair and reinforce the structure. Static test results indicate that the riveted repairs are affected by the position of the rivers. When using the same size of patch, the bonded repair technique is stronger; the rate of elongation is also increased. Form FEM analysis, it is revealed the origin of patch debonding in patch-bonded structures is the edge of the patch along to the tensile strength.

  • PDF

Valve Seat Design for Full Contact Effect Using Grey Relational Analysis (회색 관계 분석법을 이용한 누수 방지용 밸브 시트 설계)

  • Lee, Jung-Hee;Kang, Gyeong-Ah;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.17-22
    • /
    • 2018
  • A glove valve regulates the flow in a pipeline as a kind of control valve. However, when the disc and seat contact, the valve structure can be distorted and flow can leak due to the elongation of the valve material under high pressure. The surface texture is not good enough to seal the contact surface (in practice) because the lapping process is usually done manually. Furthermore, assembly performance is analyzed by structural analysis. Compared with a standard seat, the newly designed seat had a smaller radial deformation and a larger longitudinal deformation. Therefore, the newly designed seat can maintain a tight and uniform contact with the disc with a reduced radial deformation and an expanded available seal area with an increased longitudinal deformation. The seal performance of the glove valve has been improved in a cost-effective manner.

Oxovanadium(IV) Complexes Containing VO(ONS) Basic Core: Synthesis, Structure, and Spectroscopic Properties

  • Jang, Yoon-Jung;Lee, Uk;Koo, Bon-Kweon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.72-76
    • /
    • 2005
  • Some mononuclear oxovanadium(IV) complexes having the general formula [VOL(bidentate)] (1-4) of which L is tridentate ONS-donor salicylaldehyde S-methyldithiocarbazate (sal-mdtc$^{2-}$) or salicylaldehyde 4- phenylthiosemicarbazate (sal-phtsc$^{2-}$) and bidentate stands for 2,2'-bipyridyl (bpy) or 1,10-phenanthroline (phen) have been synthesized. The complexes were characterized by elemental analyses, FAB mass, UV, IR spectroscopy, and cyclic voltammetry. Two of the complexes [VO(sal-mdtc)(bpy)] (1) and [VO(sal-mdtc) (phen)] (2) were crystallographically characterized. The structures revealed that vanadium atom is octahedrally coordinated by the O, N, and S donor atoms of the tridentate ligand, the two N atoms of bidentate ligand, and the oxo atom. The oxygen donor, occupying an apical position has a trans-labilizing effect, resulting in elongation of the V-N bond. The cyclic voltammograms of the complexes exhibited one cathodic response in the range −d1.45 $\sim$ −f1.52 V due to the reduction of V(IV) to V(III).

The effects of rolling process on microstructures and high temperature tensile properties of Al-Mg alloy (Al-Mg합금의 압연변수에 다른 미세구조의 변화와 고온인장특성)

  • Kim, Tae-Kue;Jeon, C.H.;Kwun, S.I.;Park, Jong-Woo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.2
    • /
    • pp.81-92
    • /
    • 1997
  • The effect of alloying elements, precipitate size, its distribution, and dislocation substructure resulted from warm rolling or cold rolling in the superplastic Al-Mg alloy system was investigated. One of the major requirements for fine structure superplasticity is that the grain size should be very small. Fine grain structure is controlled by the dislocation substructure and the dynamic recrystallization during hot or warm working. The recovery of Al-Mg base alloys was constrained resulting in relatively high dislocation density when the alloys were warm rolled. In particular, Al-Mg-Zr alloy exhibited the smallest sub-grain size among Al-Mg alloys containing Mn, Cu, Zr as a third element. The Al-Mg-Mn alloy cold rolled 80% after hot rolling showed the maximun strain rate sensitivity exponent, m, of 0.75 under strain rate of $7.1{\times}10^{-4}/s$ at $500^{\circ}C$. The elongation of the alloys was limited in spite of high m values due to large dispersoids containing appreciable amount of Fe impurities.

  • PDF

Physical Properties of Recycled Polyester Yarns According to Recycling Methods (재생 방법에 따른 재생 폴리에스터사의 물성 변화)

  • Lee, Sun-Young;Won, Jong-Sung;Yoo, Jae-Jung;Hahm, Wan-Gyu;Lee, Seung-Goo
    • Textile Coloration and Finishing
    • /
    • v.24 no.1
    • /
    • pp.91-96
    • /
    • 2012
  • The physical properties of recycled polyester yarns according to recycling methods were investigated. Virgin polyester draw texturized yarn(DTY), material-recycled(MR) polyester DTY and chemical-recycled(CR) polyester DTY were prepared. Surface morphology, thermal property, micro-structure and mechanical property of recycled polyester yarns were estimated. SEM-EDS analysis showed that the CR PET yarn had better crimp and more stable structure than MR PET yarn. Tm of the MR PET yarn was higher than that of the CR PET yarn. The intensity of the crystallization peak of the CR PET yarn was a little higher than that of the MR PET yarn. Tensile strength of the MR PET yarn was slightly higher than that of the CR PET yarn. Breaking elongation of the CR PET yarn was slightly higher than that of the MR PET yarn.

Compression Properties of Weft Knitted Fabrics Consisting of Shrinkable and Non-Shrinkable Acrylic Fibers

  • Bakhtiari M.;Najar S. Shaikhzadeh;Etrati S. M.;Toosi Z. Khorram
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.295-304
    • /
    • 2006
  • High-bulk worsted yams with different shrinkable and non-shrinkable acrylic fibers blend ratios are produced and then single jersey weft knitted fabrics with three different structures and loop lengths are constructed. The physical properties of produced yams and compression properties of produced fabrics at eight pressure values (50, 100, 200, 500, 1000, 1500 and $2000 g/cm^2$) were measured using a conventional fabric thickness tester. Then, weft-knitted fabric compression behavior was analyzed using a two parameters model. It is found that at 40 % shrinkable fibre blending ratio the maximum yam bulk, shrinkage, abrasion resistance and minimum yarn strength are obtained. It is also shown that high-bulk acrylic yarn has the highest elongation at 20 % shrinkable fibre blend ratio. The statistical regression analysis revealed that the compression behavior of acrylic weft-knitted fabrics is highly closed to two parameter model proposed for woven fabrics. It is also shown that for weft-knitted structure, there is an incompressible layer (V') which resists against high compression load. Acrylic weft-knitted fabrics with knit-tuck structure exhibit higher compression rigidity and lower softness than the plain and knit-miss structures. In addition, at 20 % shrinkable fibre blend ratio, the high-bulk acrylic weft-knitted fabrics are highly compressible.