• Title/Summary/Keyword: Elman neural network

Search Result 33, Processing Time 0.019 seconds

A Control Method using the modified Elman Neural Network (변형된 Elman 신경회로망을 이용한 제어방식)

  • 최우승;김주동
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.3
    • /
    • pp.67-72
    • /
    • 1999
  • The neural network is a static network that consists of a number of layer: input layer, output layer and one or more hidden layer connected in a feed forward way. The popularity of neural network appear to be its ability of learning and approximation capability. The Elman Neural Network proposed the J. Elman. is a type of recurrent network. Is has the feedback links from hidden layer to context layer. So Elman Neural Network is the better performance than the neural network. In this paper. we propose the Modified Elman Neural Network. The structure of a MENN is based on the basic ENN. The recurrency of the network is due to the feedback links from the output layer and the hidden layer to the context layer. In order to certify the usefulness or the proposed method. the MENN apply to the multi target system. Simulation shows that the proposed MENN method is better performance than the multi layer neural network and ENN.

A New Type of the Elmaln Neural Network (새로운 형태의 Elman 신경회로망)

  • 최우승;김주동
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.1
    • /
    • pp.62-67
    • /
    • 1999
  • The neural network is a static network that consists of a number of layer: input layer, output layer and one or more hidden layer connected in a feed forward way. The popularity of neural network appear to be its ability of learning and approximation capability. The Elman Neural Network proposed the J. Elman, is a type of recurrent network. Is has the feedback links from hidden layer to context layer. So Elman Neural Network is the better performance than the neural network. In this paper. we propose the Modified Elman Neural Network. The structure of a MENN is based on the basic ENN. The recurrency of the network is due to the feedback links from the output layer and the hidden layer to the context layer. In order to certify the usefulness of the proposed method, the MENN apply to the X-Y cartesian tracking system. Simulation shows that the proposed MENN method is better performance than the multi layer neural network and ENN.

  • PDF

Modified elman neural network structure for nonlinear system identification (비선형 시스템 식별을 위한 수정된 elman 신경회로망 구조)

  • 정경권;권성훈;이인재;이정훈;엄기환
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.917-920
    • /
    • 1998
  • In this paper, we propose a modified elman neural network structure for nonlinear system identification. The proposed structure is that all of network output feed back into hidden units and output units. Learning algorithm is standard back-propagation algorithm. The simulation showed the effectiveness of using the modified elman neural network structure in the nonlinear system identification.

  • PDF

Peak Impact Force of Ship Bridge Collision Based on Neural Network Model (신경망 모델을 이용한 선박-교각 최대 충돌력 추정 연구)

  • Wang, Jian;Noh, Jackyou
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.175-183
    • /
    • 2022
  • The collision between a ship and bridge across a waterway may result in extremely serious consequences that may endanger the safety of life and property. Therefore, factors affecting ship bridge collision must be investigated, and the impact force should be discussed based on various collision conditions. In this study, a finite element model of ship bridge collision is established, and the peak impact force of a ship bridge collision based on 50 operating conditions combined with three input parameters, i.e., ship loading condition, ship speed, and ship bridge collision angle, is calculated via numerical simulation. Using neural network models trained with the numerical simulation results, the prediction model of the peak impact force of ship bridge collision involving an extremely short calculation time on the order of milliseconds is established. The neural network models used in this study are the basic backpropagation neural network model and Elman neural network model, which can manage temporal information. The accuracy of the neural network models is verified using 10 test samples based on the operating conditions. Results of a verification test show that the Elman neural network model performs better than the backpropagation neural network model, with a mean relative error of 4.566% and relative errors of less than 5% in 8 among 10 test cases. The trained neural network can yield a reliable ship bridge collision force instantaneously only when the required parameters are specified and a nonlinear finite element solution process is not required. The proposed model can be used to predict whether a catastrophic collision will occur during ship navigation, and thus hence the safety of crew operating the ship.

The Prediction and Analysis of the Power Energy Time Series by Using the Elman Recurrent Neural Network (엘만 순환 신경망을 사용한 전력 에너지 시계열의 예측 및 분석)

  • Lee, Chang-Yong;Kim, Jinho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.1
    • /
    • pp.84-93
    • /
    • 2018
  • In this paper, we propose an Elman recurrent neural network to predict and analyze a time series of power energy consumption. To this end, we consider the volatility of the time series and apply the sample variance and the detrended fluctuation analyses to the volatilities. We demonstrate that there exists a correlation in the time series of the volatilities, which suggests that the power consumption time series contain a non-negligible amount of the non-linear correlation. Based on this finding, we adopt the Elman recurrent neural network as the model for the prediction of the power consumption. As the simplest form of the recurrent network, the Elman network is designed to learn sequential or time-varying pattern and could predict learned series of values. The Elman network has a layer of "context units" in addition to a standard feedforward network. By adjusting two parameters in the model and performing the cross validation, we demonstrated that the proposed model predicts the power consumption with the relative errors and the average errors in the range of 2%~5% and 3kWh~8kWh, respectively. To further confirm the experimental results, we performed two types of the cross validations designed for the time series data. We also support the validity of the model by analyzing the multi-step forecasting. We found that the prediction errors tend to be saturated although they increase as the prediction time step increases. The results of this study can be used to the energy management system in terms of the effective control of the cross usage of the electric and the gas energies.

The Improving Method of Characters Recognition Using New Recurrent Neural Network (새로운 순환신경망을 사용한 문자인식성능의 향상 방안)

  • 정낙우;김병기
    • Journal of the Korea Society of Computer and Information
    • /
    • v.1 no.1
    • /
    • pp.129-138
    • /
    • 1996
  • In the result of Industrial development. largeness and highness of techniques. a large amount of Information Is being treated every year. Achive informationization. we must store in computer ,all informations written on paper for a long time and be able to utilize them In right time and place. There Is recurrent neural network as a model rousing the output value In learning neural network for characters recognition. But most of these methods are not so effectively applied to it. This study suggests a new type of recurrent neural network to classifyeffectively the static patterns such as off-line handwritten characters. This study shows that this new type Is better than those of before in recognizing the patterns. such as figures and handwritten characters, by using the new J-E (Jordan-Elman) neural network model in which enlarges and combines Jordan and Elman Model.

  • PDF

Nonlinear Adaptive Prediction using Locally and Globally Recurrent Neural Networks (지역 및 광역 리커런트 신경망을 이용한 비선형 적응예측)

  • 최한고
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.1
    • /
    • pp.139-147
    • /
    • 2003
  • Dynamic neural networks have been applied to diverse fields requiring temporal signal processing such as signal prediction. This paper proposes the hybrid network, composed of locally(LRNN) and globally recurrent neural networks(GRNN), to improve dynamics of multilayered recurrent networks(RNN) and then describes nonlinear adaptive prediction using the proposed network as an adaptive filter. The hybrid network consists of IIR-MLP and Elman RNN as LRNN and GRNN, respectively. The proposed network is evaluated in nonlinear signal prediction and compared with Elman RNN and IIR-MLP networks for the relative comparison of prediction performance. Experimental results show that the hybrid network performs better with respect to convergence speed and accuracy, indicating that the proposed network can be a more effective prediction model than conventional multilayered recurrent networks in nonlinear prediction for nonstationary signals.

System Identification Using Hybrid Recurrent Neural Networks (Hybrid 리커런트 신경망을 이용한 시스템 식별)

  • Choi Han-Go;Go Il-Whan;Kim Jong-In
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.1
    • /
    • pp.45-52
    • /
    • 2005
  • Dynamic neural networks have been applied to diverse fields requiring temporal signal processing. This paper describes system identification using the hybrid neural network, composed of locally(LRNN) and globally recurrent neural networks(GRNN) to improve dynamics of multilayered recurrent networks(RNN). The structure of the hybrid nework combines IIR-MLP as LRNN and Elman RNN as GRNN. The hybrid network is evaluated in linear and nonlinear system identification, and compared with Elman RNN and IIR-MLP networks for the relative comparison of its performance. Simulation results show that the hybrid network performs better with respect to the convergence and accuracy, indicating that it can be a more effective network than conventional multilayered recurrent networks in system identification.

  • PDF

A New Thpe of Recurrent Neural Network for the Umprovement of Pattern Recobnition Ability (패턴 인식 성능을 향상시키는 새로운 형태의 순환신경망)

  • Jeong, Nak-U;Kim, Byeong-Gi
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.2
    • /
    • pp.401-408
    • /
    • 1997
  • Human gets almist all of his knoweledge from the recognition and the accumulation of input patterns,image or sound,the he gets theough his eyes and through his ears.Among these means,his chracter recognition,an ability that allows him to recognize characters and understand their meanings through visual information, is now applied to a pattern recognition system using neural network in computer. Recurrent neural network is one of those models that reuse the output value in neural network learning.Recently many studies try to apply this recurrent neural network to the classification of static patterns like off-line handwritten characters. But most of their efforts are not so drrdtive until now.This stusy suggests a new type of recurrent neural network for an deedctive classification of the static patterns such as off-line handwritten chracters.Using the new J-E(Jordan-Elman)neural network model that enlarges and combines Jordan Model and Elman Model,this new type is better than those of before in recobnizing the static patterms such as figures and handwritten-characters.

  • PDF

Application of recurrent neural network for inflow prediction into multi-purpose dam basin (다목적댐 유입량 예측을 위한 Recurrent Neural Network 모형의 적용 및 평가)

  • Park, Myung Ky;Yoon, Yung Suk;Lee, Hyun Ho;Kim, Ju Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.12
    • /
    • pp.1217-1227
    • /
    • 2018
  • This paper aims to evaluate the applicability of dam inflow prediction model using recurrent neural network theory. To achieve this goal, the Artificial Neural Network (ANN) model and the Elman Recurrent Neural Network(RNN) model were applied to hydro-meteorological data sets for the Soyanggang dam and the Chungju dam basin during dam operation period. For the model training, inflow, rainfall, temperature, sunshine duration, wind speed were used as input data and daily inflow of dam for 10 days were used for output data. The verification was carried out through dam inflow prediction between July, 2016 and June, 2018. The results showed that there was no significant difference in prediction performance between ANN model and the Elman RNN model in the Soyanggang dam basin but the prediction results of the Elman RNN model are comparatively superior to those of the ANN model in the Chungju dam basin. Consequently, the Elman RNN prediction performance is expected to be similar to or better than the ANN model. The prediction performance of Elman RNN was notable during the low dam inflow period. The performance of the multiple hidden layer structure of Elman RNN looks more effective in prediction than that of a single hidden layer structure.