신경회로망은 학습능력과 근사화 능력으로 말미암아 패턴인식 및 시스템제어분야에서 많이 사용되고 있으며, 입력층. 출력층. 하나 이상의 은닉층으로 구성된 네드워크이다. Elman 신경회로망은 J. Elman에 의해 제안되었으며. recurrent network의 형태로 구성되어 있다. Elman 신경회로망은 기존의 신경회로망에 context층을 새로 추가하여, 은닉층의 출력을 context층의 입력으로 피드백 하는 구조로 되어 있다. 본 논문에서는 새로운 형태의 Elman 신경회로망을 제안한다. 제안한 방식은 Elman 신경회로망을 변형한 형태로. 은닉층 뿐 만 아니라 출력층의 출력도 context층으로 피드백 하는 형태이다. 제안한 방식의 유용성을 확인하기 위해 multi target system에 적용한다. 시뮬레이션 결과는 제안한 방식이 기존의 신경회로망 및 Elman 신경회로망 보다 우수한 방식임을 보여 주고 있다.
신경회로망은 입력층. 출력층, 하나 이상의 은닉층으로 구성된 네드워크이다. 학습능력과 근사화 능력으로 말미암아 신경회로망은 패턴인식 및 시스템제어분야에서 많이 사용되고 있다. Elman 신경회로망은 J. Elman에 의해 제안되었으며, recurrent network의 형태로 구성되어 있다. Elman 신경회로망은 기존의 신경회로망에 context층을 새로 추가하여, 은닉층의 출력을 context층의 입력으로 피드백 하는 구조로 되어 있다. 본 논문에서는 Elman 신경회로망을 변형한 형태로, 은닉층 뿐 만 아니라 출력층의 출력도 context층으로 피드백 하는 새로운 형태의 Elman 신경회로망을 제안한다. 제안한 방식의 유용성을 확인하기 위해 X-Y cartesian에 적용하여 시뮬레이션한 결과는 기존의 신경회로망 및 Elman 신경회로망 보다 우수한 방식임을 보여 주고 있다.
동적 신경망은 신호예측과 같이 temporal 신호처리가 요구되는 여러 분야에 적용되어 왔다. 본 논문에서는 다층 리커런트 신경망(RNN)의 동특성을 향상시키기 위해 지역 궤환 신경망(LRNN)과 광역 궤환 신경망(CRNN)으로 구성된 합성 신경망을 제안하고, 적응필터로 제안된 신경망을 사용하여 비선형 적응예측을 다루고 있다. 합성 신경망은 LRNN으로 IIR-MLP와 CRNN으로 Elman RNN 신경망으로 구성되어 있다. 제안된 신경망은 비선형 신호예측을 통해 평가되었으며, 예측 성능의 상대적인 비교를 위해 Elman RNN과 IIR-MLP 신경망과 상호 비교하였다. 실험결과에 의하면 합성 신경망은 수렴속도과 정확도에서 더 우수한 성능을 보여줌으로써, 제안된 신경망이 기존의 다층 리커런트 신경망보다 비정적 신호에 대한 비선형 예측에 더 효과적인 예측모델임을 확인하였다.
동적 신경망은 temporal 신호처리가 요구되는 여러 분야에 사용되어 왔다. 본 논문에서는 다층 리커런트 신경망(RNN)의 동특성을 더 향상시키기 위해 지역 궤환 신경망(LRNN)과 광역 궤환 신경망(GRNN)으로 구성된 합성 신경망을 사용하여 시스템 식별을 다루고 있다. 합성 신경망의 구조는 LRNN으로 IIR-MLP를, GRNN으로 Elman RNN을 결합하고 있다. 합성신경망은 선형과 비선형 시스템 식별을 통해 평가되었으며 상대적인 성능평가를 위해 Elman RNN과 IIR-MLP 신경망과 비교하고 있다. 시뮬레이션 결과에 의하면 합성 신경망은 학습속도와 정확도에서 더 우수하게 동작하였으며, 이러한 사실은 비선형 시스템 식별에 있어서 합성 신경망이 기존의 다층 리커런트 신경망보다 더 효과적인 신경망이 될 수 있음을 보여주었다.
In this paper, we propose an Elman recurrent neural network to predict and analyze a time series of power energy consumption. To this end, we consider the volatility of the time series and apply the sample variance and the detrended fluctuation analyses to the volatilities. We demonstrate that there exists a correlation in the time series of the volatilities, which suggests that the power consumption time series contain a non-negligible amount of the non-linear correlation. Based on this finding, we adopt the Elman recurrent neural network as the model for the prediction of the power consumption. As the simplest form of the recurrent network, the Elman network is designed to learn sequential or time-varying pattern and could predict learned series of values. The Elman network has a layer of "context units" in addition to a standard feedforward network. By adjusting two parameters in the model and performing the cross validation, we demonstrated that the proposed model predicts the power consumption with the relative errors and the average errors in the range of 2%~5% and 3kWh~8kWh, respectively. To further confirm the experimental results, we performed two types of the cross validations designed for the time series data. We also support the validity of the model by analyzing the multi-step forecasting. We found that the prediction errors tend to be saturated although they increase as the prediction time step increases. The results of this study can be used to the energy management system in terms of the effective control of the cross usage of the electric and the gas energies.
인간이 지식을 얻는 대부분의 수단은, 눈으로 사물을 보거나 귀로 소리를 들어 입력되는 패턴.영상또는 소리.을 인식하고 그것을 지식으로 축적하는 연속적인 과정이다. 그중 문자인식은 시각정보를 통하여 문제를 인식하고 나아가 의미를 이해하는 인간의 능력을 컴퓨터로 실현하려는 패턴인식의 한분야로서 신경망을 사용한 패턴인식 시스템으로 발전되고 있다. 신경망의 학습에 있어서를 출력값을 재사용하는 신경망모델로는, 순환신경망( Recurrent Neural Netwrek)이 있다. 최근 들어서 이러한 순환신경망을 오프라인 필기체 문자와 같은 정적인 패턴의 분류에 적용하려는 연구가 많이 진행되고 있다. 그러나 이러한 방법들의 대부분든 오프라인 필기체문자와 같은 정적인 패턴의 분류에 있어서는 효과적으로 적용되지 않는다. 이에 본 연구에서는 오프라인 필기체문자와 같은 정적인 패턴을 효과적으로 분르하기 위한 새로운 형태의 순환신경망을 제안한다.본논문에서는 Jordan과 Elman Model 을 확정 결합한 새로운 J-E(Jordan-Elman) 신경망 모델을 사용하여 숫자 및 필기체 문자와 같은 정적인 패턴의 인식에서 기존의 신명망보다 성능이 향상되었음을 보여 준다.
산업발전과 기술의 대형화. 고도화 등으로 인하여 매년 방대한 양리 정보가 처리되고 있다 정보화를 이루기 위해서는 대부분 종이로 기록뇌어 내려오던 정보를 컴퓨터에 저장하여 적기적소에 사용할 수 있어야 한다. 문자인식을 위한 신경망의 학습에 있어서 출력 값을 재사용하는 신경망모델로는 순환신경망이 있다. 그러나 이러한 방법들의 대부분은 오프라인 필기체문자와 같은 정적인 패턴의 분류에 있어서는 효과적으로 적락되지 않는다. 이에 본 연구에서는 오프라인 필기체문자와 같은 정적인 패턴을 효과적으로 분류하기 위한 새로운 형태의 순환신경망을 제안한다. 본 논문은 Jordan과 Elman Model을 확장 결합한 새로운 J-도(Jordan-Elman) 신경망 모델을 사용하여 숫자 및 필기체 문자와 같은 정적인 패턴의 인식에서 기존의 신경망보다 성능이 향상되었음을 보여준다.
본 논문은 회귀신경망을 이용한 음성인식에 관한 연구이다. 예측형 신경망으로 음절단위로 모델링한 후 미지의 입력음성에 대하여 예측오차가 최소가 되는 모델을 인식결과로 한다. 이를 위해서 예측형으로 구성된 신경망에 음성의 시변성을 신경망 내부에 흡수시키기 위해서 회귀구조의 동적인 신경망인 회귀예측신경망을 구성하고 Elman과 Jordan이 제안한 회귀구조에 따라 인식성능을 서로 비교하였다. 음성DB는 ETRI의 샘돌이 음성 데이터를 사용하였다. 그리고, 신경망의 최적모델을 구하기 위하여 예측차수와 은닉층 유니트 수의 변화에 따른 인식률의 변화와 문맥층에서 자기회귀계수를 두어 이전의 값들이 문맥층에서 누적되도록 하였을 경우에 대한 인식률의 변화를 비교하였다. 실험결과, 최적의 예측차수, 은닉층 유니트수, 자기회귀계수는 신경망의 구조에 따라 차이가 나타났으며, 전반적으로 Jordan망이 Elman망보다 인식률이 높았으며, 자기회귀계수에 대한 영향은 신경망의 구조와 계수값에 따라 불규칙하게 나타났다.
본 연구에서는 순환신경망을 이용한 댐 유입량 예측모형의 적용성 검토를 목적으로 하고 있으며, 이를 위해 소양강댐 유역 및 충주댐 유역을 대상으로 그간 댐 운영을 통해 축적된 기상 및 수문 빅데이터를 활용하여 인공신경망 모형과 엘만 순환신경망 모형을 구축하였다. 모형의 학습과 예측을 위하여 유역별 유입량, 강우량, 기온, 일조시간, 풍속자료가 입력자료로 사용되었고 10일간 일별 댐유입량 자료가 모델의 출력자료로 구조화 하여 학습을 진행한 후 검증을 목적으로 2016년 7월 ~ 2018년 6월까지 2개년에 대한 댐 유입량 예측을 수행하였다. 학습된 모형의 유입량 예측 결과를 비교분석한 결과, 소양강댐 유역에서는 인공신경망 모형과 순환신경망 모형 간 예측성능은 큰 차이를 보이지 않았으며, 충주댐 유역에서는 순환신경망 모형의 예측 결과가 인공신경망 모형에 비해 비교적 우수한 성능을 보임에 따라 엘만 순환신경망을 이용하여 댐 유입량 예측모형을 구축할 경우 예측성능은 기존의 인공신경망 모형과 비슷하거나 다소 우수할 것으로 판단된다. 또한 엘만 순환신경망은 갈수기 댐 유입량 예측에 있어서 인공신경망에 비해 예측결과의 재현성이 우수한 것으로 나타났으며, 엘만 순환신경망 학습에 있어 다중 은닉층 구조가 단일 은닉층 구조보다 예측 성능 향상에 효과적인 것으로 분석되었다.
Journal of Electrical Engineering and information Science
/
제1권1호
/
pp.108-117
/
1996
In this paper, we propose a new type of recurrent neural network architecture in which each output unit is connected with itself and fully-connected with other output units and all hidden units. The proposed recurrent network differs from Jordan's and Elman's recurrent networks in view of functions and architectures because it was originally extended from the multilayer feedforward neural network for improving the discrimination and generalization power. We also prove the convergence property of learning algorithm of the proposed recurrent neural network and analyze the performance of the proposed recurrent neural network by performing recognition experiments with the totally unconstrained handwritten numeral database of Concordia University of Canada. Experimental results confirmed that the proposed recurrent neural network improves the discrimination and generalization power in recognizing spatial patterns.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.