• Title/Summary/Keyword: Ellipses

Search Result 93, Processing Time 0.024 seconds

Active Calibration of the Robot/camera Pose using Cylindrical Objects (원형 물체를 이용한 로봇/카메라 자세의 능동보정)

  • 한만용;김병화;김국헌;이장명
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.314-323
    • /
    • 1999
  • This paper introduces a methodology of active calibration of a camera pose (orientation and position) using the images of cylindrical objects that are going to be manipulated. This active calibration method is different from the passive calibration where a specific pattern needs to be located at a certain position. In the active calibration, a camera attached on the robot captures images of objects that are going to be manipulated. That is, the prespecified position and orientation data of the cylindrical object are transformed into the camera pose through the two consecutive image frames. An ellipse can be extracted from each image frame, which is defined as a circular-feature matrix. Therefore, two circular-feature matrices and motion parameters between the two ellipses are enough for the active calibration process. This active calibration scheme is very effective for the precise control of a mobile/task robot that needs to be calibrated dynamically. To verify the effectiveness of active calibration, fundamental experiments are peformed.

  • PDF

A FITTING OF PARABOLAS WITH MINIMIZING THE ORTHOGONAL DISTANCE

  • Kim, Ik-Sung
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.2
    • /
    • pp.669-684
    • /
    • 1999
  • We are interested in the problem of fitting a curve to a set of points in the plane in such a way that the sum of the squares of the orthogonal distances to given data points ins minimized. In[1] the prob-lem of fitting circles and ellipses was considered and numerically solved with general purpose methods. Especially in [2] H. Spath proposed a special purpose algorithm (Spath's ODF) for parabolas y-b=$c($\chi$-a)^2$ and for rotated ones. In this paper we present another parabola fitting algorithm which is slightly different from Spath's ODF. Our algorithm is mainly based on the steepest descent provedure with the view of en-suring the convergence of the corresponding quadratic function Q(u) to a local minimum. Numerical examples are given.

Observed and Computed Tidal Currents in the East China Sea (東支那海의 觀測潮流 및 計算潮流)

  • 최병호
    • 한국해양학회지
    • /
    • v.20 no.1
    • /
    • pp.56-73
    • /
    • 1985
  • The three-dimensional hydrodynamic numerical model of the Yellow Sea and the East China Sea has been further utilised to provide S$\sub$2/,K$\sub$1/,O$\sub$1/ tidal currents distribution in addition to previously provided M$\sub$2/ tidal current distribution(Choi, 1984), especially the vertical variation of horizontal current in the region. Model results have been compared with current meter data acquired from recent China-USA Marine Sedimentation Dyamics Programme (Larsen and Cannon, 1983). Results were also used to provide maps of the S$\sub$2/,K$\sub$1/,O$\sub$1/ tidal current constants and tidal ellipses at three depths to complement previous M$\sub$2/ tidal current information.

  • PDF

Design of Elliptical Gears for Wire Cutting (타원형 기어의 와이어커팅을 위한 설계)

  • Lee, Sung-Chul
    • Tribology and Lubricants
    • /
    • v.23 no.4
    • /
    • pp.149-155
    • /
    • 2007
  • The CAD model of a elliptical gear for wire cutting has been developed. The rolling contact of pitch ellipses whose rotation axes coincide with their focus has been analyzed, and the perimeter of the pitch ellipse has been divided into equal-length segments by the number of teeth. A master tooth profile, which is a composite curve of circular arcs that represents involute, has been introduced. The elliptical gear has been designed by imposing the master tooth on the divided points of the pitch ellipse, and a full fillet has been achieved between neighbour teeth. Thus, the whole profile of an elliptical gear is a composite curve of arcs only, and consequently NC codes for wire cutting can be easily generated. Furthermore, a computer simulation program is developed to verify the mesh of the elliptical gear.

Unsteady Viscous Flow over Elliptic Cylinders At Various Thickness with Different Reynolds Numbers

  • Kim Moon-Sang;Sengupta Ayan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.877-886
    • /
    • 2005
  • Two-dimensional incompressible Navier-Stokes equations are solved using SIMPLER method in the intrinsic curvilinear coordinates system to study the unsteady viscous flow physics over two-dimensional ellipses. Unsteady viscous flows over various thickness-to-chord ratios of 0.6, 0.8, 1.0, and 1.2 elliptic cylinders are simulated at different Reynolds numbers of 200, 400, and 1,000. This study is focused on the understanding the effects of Reynolds number and elliptic cylinder thickness on the drag and lift forces. The present numerical solutions are compared with available experimental and numerical results and show a good agreement. Through this study, it is observed that the Reynolds number and the cylinder thickness affect significantly the frequencies of the force oscillations as well as the mean values and the amplitudes of the drag and lift forces.

A Study on the Shape Optimal Design of a Bogie Frame for the Reduction of its Weight (대차프레임의 중량감소를 위한 형상최적설계에 관한 연구)

  • 조우석;최경호;박정호;안찬우;김현수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.616-619
    • /
    • 2000
  • The optimum design of a structure requires to determine economical member size and shape of a structure which satisfies the design conditions and functions. In this study, it is attempted to minimize a dead weight of the bogie frame. Therefore, shape optimization is performed for a bolster rib at first and then size optimization for the thickness of top and bottom plate. For the efficient reduction of a weight of a bogie frame, various ellipses centered at a centroid of a bolster rib are made and tried. For the shape optimization, a major axis and an eccentricity of an ellipse are chosen as design variables. From the numerical results of shape and size optimization of a bogie frame, it is known that the weight can be reduced up to 12.476 Y4717.21 kg) with displacement and stress constraints.

  • PDF

Obstacle Avoidance of Underactuated Robot Manipulators Using Switching Computed Torque Method

  • Keigo, Watanabe;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.44.2-44
    • /
    • 2001
  • This paper presents a new concept for controlling of under actuated robot manipulators with avoiding obstacles using switching computed torque method (SCTM). One fundamental approach of this algorithm is to use the partly stable controllers (PSCs) in order to fulfill the ultimate control objective. Here, we use genetic algorithms (GA)in order to employ the optimum control action for a given time frame with the available set of elemental controllers, depending on which links/variables are controlled, i.e. the selection of optimum switching sequence of the control actions. The proposed approach models links of the robot using evolving ellipses and then introduces a penalty scheme for the objective function of GA when it detects collisions. An under actuated robot manipulator, which has three detrees-of-freedom is taken into consideration so as to illustrate the design procedure. Simulation results show the e.ectiveness of the proposed method.

  • PDF

MINIMAL SURFACES IN ℝ4 FOLIATED BY CONIC SECTIONS AND PARABOLIC ROTATIONS OF HOLOMORPHIC NULL CURVES IN ℂ4

  • Lee, Hojoo
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.1-19
    • /
    • 2020
  • Using the complex parabolic rotations of holomorphic null curves in ℂ4 we transform minimal surfaces in Euclidean space ℝ3 to a family of degenerate minimal surfaces in Euclidean space ℝ4. Applying our deformation to holomorphic null curves in ℂ3 induced by helicoids in ℝ3, we discover new minimal surfaces in ℝ4 foliated by hyperbolas or straight lines. Applying our deformation to holomorphic null curves in ℂ3 induced by catenoids in ℝ3, we rediscover the Hoffman-Osserman catenoids in ℝ4 foliated by ellipses or circles.

An Algorithm for Generating the Umbra from a Convex Quadric Light Source (볼록 이차 광원으로부터 완전음영부를 생성하는 알고리즘)

  • Yoo, Kwan-Hee;Shin, Sung-Yong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.6
    • /
    • pp.541-548
    • /
    • 2000
  • An area light source in the three dimensional space shines past a scene polygon, to generate two types of shadow volumes for each scene polygon, i.e., one with partial occlusion and the other with the complete occlusion. These are called, penumbra and umbra, respectively. In this paper, consider the problem for computing the umbra of a convex polygon from convex quadric light sources such as circles, ellipses, spheres, ellipsoids and cylinders. First, we give characteristics of the boundary surfaces of the umbra and then propose an algorithm for generating the umbra using them.

  • PDF

Error Analysis of Time-Based and Angle-Based Location Methods (시간기반과 각도기반의 측위방식 성능비교 및 오차 특성 분석)

  • Kim Dong-Hyeok;Song Seung-Hun;Sung Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.962-967
    • /
    • 2006
  • Indoor positioning is highlighted recently, and various kinds of indoor positioning systems are under developments. Since positioning systems have their own characteristics, proper positioning scheme should be chosen according to the required specifications. Positioning methods are classified into time-based and angle-based one. This paper presents the error analysis of time-based and angle-based location methods. Because measurements of these methods are nonlinear, linearizations are needed in both cases to estimate the user position. In the linearization, Gauss-Newton method is used in both cases. To analyze the position error, we investigate the error ellipse parameters that include eccentricity, rotation angle, and the size of ellipse. Simulation results show that the major axes of TOA and AOA method lie in different quadrants at most region of workspace, especially where the geometry is poor. When the TOA/AOA hybrid is employed, it is found that the error ellipse is reduced to the intersection of ellipses of TOA and AOA.