• Title/Summary/Keyword: Elevation Angle Accuracy

Search Result 48, Processing Time 0.02 seconds

PANEL ADJUSTMENT OF THE TRAO 13.7-m ANTENNA USING PHOTOGRAMMETRY (사진측량법을 이용한 대덕전파천문대 13.7미터 안테나의 경면 조정)

  • Lee, Changhoon;Jung, J.H.;Kang, H.W.;Kim, H.G.;Lee, Youngung;Jung, J.O.;Sohn, Y.D.;Bae, M.S.
    • Publications of The Korean Astronomical Society
    • /
    • v.29 no.3
    • /
    • pp.53-58
    • /
    • 2014
  • We improved the antenna efficiency of the Taeduk Radio Astronomy Observatory (TRAO) 13.7-m radio telescope by adjusting the antenna panels based on digital photogrammetric measurements. First of all, we measured the surface accuracy of the main reflector of this antenna at three elevation angles of $35^{\circ}$, $45^{\circ}$, and $60^{\circ}$. We performed a total of four sets of the photogrammetric measurements and panel adjustments. When adjusting the panels, we positioned the antenna to the zenith and applied the measured data sets at the elevation of $45^{\circ}$. We found that the antenna surface accuracy has been improved by a factor of ~ 3 times after the final adjustment in comparison with the value before the adjustments. And we also found that the antenna surface accuracy tended to be slightly better at the elevation angles of $35^{\circ}$ and $60^{\circ}$ than that at the elevation angle of $45^{\circ}$. After the final panel adjustment, the aperture and beam efficiencies of the telescope have has been improved from 35% to 44%, and from 41% to 51%, respectively.

Propagation Factor Based Elevation Estimation Algorithm Selection Method in Multipath Situation (다중경로 상황에서의 전파 인자 기반 고각 추정 알고리즘 선택기법)

  • Daihyun Kwon
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.2
    • /
    • pp.172-177
    • /
    • 2024
  • This paper presents a method to overcome the problem of increasing elevation estimation error when estimating elevation in a multipath situation with radar. A multipath situation means that radar reception signals reflected from the same target come from multiple paths. In non-multipath, the monopulse method is accurate. For the opposite case, the least square error method is accurate. In multipath situation and when the elevation angle is very low, a singular occurs where the least square error estimate diverges. This singular was identified based on the propagation factor, and monopulse and least square error estimation methods were selectively used. As a result, we succeeded in increasing the accuracy of elevation estimation. MATLAB simulations were performed to verify the method proposed in this paper.

Analysis of Satellite Visibility and High Elevation Satellite using GPS and Beidou in Korea (한국지역에서 GPS와 Beidou의 위성 가시성 및 고앙각 위성 분석)

  • Jang, JinHyeok;Kim, HongPyo;Ahn, Jongsun;Heo, Moon-Beom;Sung, Sangkyung;Lee, Young Jae
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.610-615
    • /
    • 2018
  • Globally, global navigation satellite system (GNSS) is being developed and operated in advanced countries. China's Beidou is developing rapidly, starting with global positioning system (GPS), which is the most representative system. In this paper, we analyze the visibility of Beidou satellite in Korea at present time to utilize rapidly changing Beidou. In this analysis, it is compared with GPS which is stable service. The results of the visibility analysis are based on the results of the mask angle (the low elevation satellite exclusion angle) and the result of the skyplot (a visual representation of the position of the satellite at the user location). Visibility analysis shows that the high elevation angle of Beidou satellite is higher than that of GPS satellite in Korea. In addition, GPS and Beidou's availability and positioning accuracy analysis are performed to confirm the effect of increasing elevation angle satellites. According to the results, Beidou is more effective than GPS in using high elevation satellites in Korea.

A GPS Positioning and Receiver Autonomous Integrity Monitoring Algorithm Considering SA Fade Away (고의잡음의 제거를 고려한 GPS항법 및 무결성 검정알고리즘)

  • Choi, Jae-Youl;Park, Soon;Park, Chan-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.425-433
    • /
    • 2002
  • After the removal of SA (Selective Availability), horizontal accuracy of 25m(2dRMS) is easily obtained using GPS (Global Positioning System). In this paper, the error characteristics without SA are analyzed and a navigation algorithm concerns this error characteristics is proposed to further improve the accuracy. The proposed method utilizes the relationship between elevation angle and errors that are remained after ionospheric and troposheric delay compensation. The relationship is derived from real measurements and used as a weighting matrix of weighted least squares estimator. Furthermore, a RAIM (Receiver Autonomous Integrity Monitoring) technique is included to remove abnormal measurements affected by multi-path or low SNR (Signal-to-Noise Ratio). It is shown that using the proposed method, more than 4 times accurate result, which is comparable with DGPS (Differential GPS), can be obtained from experiments with real data. Besides accuracy and reliability, the proposed method reduces large jumps in position and maintains better performance than a method using mask angle to completely remove satellites below this mask angle. Thus it is expected that the proposed method can be efficiently applied to land navigation where some satellites are blocked by building or forest.

Analysis of Incidence Angle Using Total Station in Leveling

  • Roh, Tae-Ho;Seo, Dong-Ju;Lee, Jong-Chool
    • Korean Journal of Geomatics
    • /
    • v.1 no.1
    • /
    • pp.21-26
    • /
    • 2001
  • Total Station (TS) is currently widespread and used in many fields of surveying projects. However, its application functions are not perfectly understood and so insufficiently used. One of them is indirect leveling method using TS. Because we can reach a considerable accuracy level with this method, it is gradually expanding for public surveying works such as construction of roads, airports and harbors. This paper gives results of an experiment to increase accuracy of indirect leveling by TS without direct leveling, which is more comfortable and quick to determine elevation.

  • PDF

Ground Tracking Support Condition Effect on Orbit Determination for Korea Pathfinder Lunar Orbiter (KPLO) in Lunar Orbit

  • Kim, Young-Rok;Song, Young-Joo;Park, Jae-ik;Lee, Donghun;Bae, Jonghee;Hong, SeungBum;Kim, Dae-Kwan;Lee, Sang-Ryool
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.237-247
    • /
    • 2020
  • The ground tracking support is a critical factor for the navigation performance of spacecraft orbiting around the Moon. Because of the tracking limit of antennas, only a small number of facilities can support lunar missions. Therefore, case studies for various ground tracking support conditions are needed for lunar missions on the stage of preliminary mission analysis. This study analyzes the ground supporting condition effect on orbit determination (OD) of Korea Pathfinder Lunar Orbiter (KPLO) in the lunar orbit. For the assumption of ground support conditions, daily tracking frequency, cut-off angle for low elevation, tracking measurement accuracy, and tracking failure situations were considered. Two antennas of deep space network (DSN) and Korea Deep Space Antenna (KDSA) are utilized for various tracking conditions configuration. For the investigation of the daily tracking frequency effect, three cases (full support, DSN 4 pass/day and KDSA 4 pass/day, and DSN 2 pass/day and KDSA 2 pass/day) are prepared. For the elevation cut-off angle effect, two situations, which are 5 deg and 10 deg, are assumed. Three cases (0%, 30%, and 50% of degradation) were considered for the tracking measurement accuracy effect. Three cases such as no missing, 1-day KDSA missing, and 2-day KDSA missing are assumed for tracking failure effect. For OD, a sequential estimation algorithm was used, and for the OD performance evaluation, position uncertainty, position differences between true and estimated orbits, and orbit overlap precision according to various ground supporting conditions were investigated. Orbit prediction accuracy variations due to ground tracking conditions were also demonstrated. This study provides a guideline for selecting ground tracking support levels and preparing a backup plan for the KPLO lunar mission phase.

Object-based Building Change Detection Using Azimuth and Elevation Angles of Sun and Platform in the Multi-sensor Images (태양과 플랫폼의 방위각 및 고도각을 이용한 이종 센서 영상에서의 객체기반 건물 변화탐지)

  • Jung, Sejung;Park, Jueon;Lee, Won Hee;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.989-1006
    • /
    • 2020
  • Building change monitoring based on building detection is one of the most important fields in terms of monitoring artificial structures using high-resolution multi-temporal images such as CAS500-1 and 2, which are scheduled to be launched. However, not only the various shapes and sizes of buildings located on the surface of the Earth, but also the shadows or trees around them make it difficult to detect the buildings accurately. Also, a large number of misdetection are caused by relief displacement according to the azimuth and elevation angles of the platform. In this study, object-based building detection was performed using the azimuth angle of the Sun and the corresponding main direction of shadows to improve the results of building change detection. After that, the platform's azimuth and elevation angles were used to detect changed buildings. The object-based segmentation was performed on a high-resolution imagery, and then shadow objects were classified through the shadow intensity, and feature information such as rectangular fit, Gray-Level Co-occurrence Matrix (GLCM) homogeneity and area of each object were calculated for building candidate detection. Then, the final buildings were detected using the direction and distance relationship between the center of building candidate object and its shadow according to the azimuth angle of the Sun. A total of three methods were proposed for the building change detection between building objects detected in each image: simple overlay between objects, comparison of the object sizes according to the elevation angle of the platform, and consideration of direction between objects according to the azimuth angle of the platform. In this study, residential area was selected as study area using high-resolution imagery acquired from KOMPSAT-3 and Unmanned Aerial Vehicle (UAV). Experimental results have shown that F1-scores of building detection results detected using feature information were 0.488 and 0.696 respectively in KOMPSAT-3 image and UAV image, whereas F1-scores of building detection results considering shadows were 0.876 and 0.867, respectively, indicating that the accuracy of building detection method considering shadows is higher. Also among the three proposed building change detection methods, the F1-score of the consideration of direction between objects according to the azimuth angles was the highest at 0.891.

A Design of Simple and Precision Direction Finder with a Combination of an Amplitude Measurement and Phase Measurement

  • Lim Joong-Soo
    • International Journal of Contents
    • /
    • v.1 no.2
    • /
    • pp.35-38
    • /
    • 2005
  • This paper describes a design of simple and precision direction finder that can be adapted to shipboard or mobile vehicles used for Electronic support measure, ELINT and radio signal monitoring systems. The direction finding technology has improved with monolithic integrated circuit, linear array antennas, and interferometer. Interferometer uses the phase-comparison principle and has a good direction finding accuracy but it has an ambiguity problem. We suggest a simple ambiguity solver using phase-comparison technology with amplitude-comparison principle. The direction finding device that has been designed by the suggested method has 0.7 degree RMS error in azimuth angle and 0.6 degree RMS error in elevation angle in 0.5 - 2.0 GHz.

  • PDF

A Simulator for Analyzing the Accuracy of Correlative Interferometer Direction Finder (상관형 위상비교 방향탐지장치의 정확도 분석 시뮬레이터)

  • Lim, Joong-Soo;Kim, Young-Ho;Kim, Kichul
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.2
    • /
    • pp.53-58
    • /
    • 2017
  • This paper describes the design of a simulator for analyzing the accuracy of a correlative interferometer(CI) direction finder. CI direction finder is robust to noise, so it is often used in aircraft or ships where complex antenna installation is required, and the direction finding accuracy is very high. When the radio wave is incident at a specific azimuth angle, the phase difference calculated in a noiseless environment and the phase difference measured in a real environment with noise are fused to estimate the largest correlation coefficient as the azimuth angle of the radio wave. The simulator receives RF frequency, the number of antennas, the antenna coordinates, the transmission signal intensity, the bandwidth of the receiver, the gain and the payload effect, and calculates the direction finding accuracy of 0-360 degrees azimuth and 0-60 degree elevation with 0.5 degree. accuracy.

Land Use and Land Cover Mapping from Kompsat-5 X-band Co-polarized Data Using Conditional Generative Adversarial Network

  • Jang, Jae-Cheol;Park, Kyung-Ae
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.111-126
    • /
    • 2022
  • Land use and land cover (LULC) mapping is an important factor in geospatial analysis. Although highly precise ground-based LULC monitoring is possible, it is time consuming and costly. Conversely, because the synthetic aperture radar (SAR) sensor is an all-weather sensor with high resolution, it could replace field-based LULC monitoring systems with low cost and less time requirement. Thus, LULC is one of the major areas in SAR applications. We developed a LULC model using only KOMPSAT-5 single co-polarized data and digital elevation model (DEM) data. Twelve HH-polarized images and 18 VV-polarized images were collected, and two HH-polarized images and four VV-polarized images were selected for the model testing. To train the LULC model, we applied the conditional generative adversarial network (cGAN) method. We used U-Net combined with the residual unit (ResUNet) model to generate the cGAN method. When analyzing the training history at 1732 epochs, the ResUNet model showed a maximum overall accuracy (OA) of 93.89 and a Kappa coefficient of 0.91. The model exhibited high performance in the test datasets with an OA greater than 90. The model accurately distinguished water body areas and showed lower accuracy in wetlands than in the other LULC types. The effect of the DEM on the accuracy of LULC was analyzed. When assessing the accuracy with respect to the incidence angle, owing to the radar shadow caused by the side-looking system of the SAR sensor, the OA tended to decrease as the incidence angle increased. This study is the first to use only KOMPSAT-5 single co-polarized data and deep learning methods to demonstrate the possibility of high-performance LULC monitoring. This study contributes to Earth surface monitoring and the development of deep learning approaches using the KOMPSAT-5 data.