• Title/Summary/Keyword: Elevated pressure

Search Result 500, Processing Time 0.034 seconds

Relationship between ambulatory blood pressure monitoring and cardiac function (보행 혈압 측정과 심장 기능의 관계)

  • Song, Young-Hwan
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.7
    • /
    • pp.752-755
    • /
    • 2009
  • It is well known that hemodynamic load is one of the most important determinants of cardiac structure and function. Circadian variations in blood pressure (BP) are usually accompanied by consensual changes in peripheral resistance and/or cardiac output. In recent years, reduction in circadian variations in BP and, in particular, loss of nocturnal decline of BP were observed in hypertensive patients with left ventricular hypertrophy (LVH). The patients with only a slight or no loss of nocturnal decline of BP were considered "non-dippers". Regression of LVH was observed after prolonged antihypertensive therapy. Restoration of the circadian rhythm of BP was also observed. However, the classification of patients into "dippers" and "non-dippers" is arbitrary and poorly standardized and repeatable, and in the recent studies, most hypertensive patients with LVH were "dippers". Therefore, we should be particularly cautious about the conclusions drawn using this index. On the other hand, reduced activity of low-pressure cardiopulmonary baroreceptors and impaired day-to-night modulation of autonomic nervous system activity were observed in patients with only LVH. Therefore, alterations in cardiac structure may impair BP modulation. On the other hand, the reverse can also be trueprimary alterations in BP modulation, through a persistently elevated afterload, can increase cardiac mass. Thus, the interrelationship between cardiac structure and BP modulation is complex. Hence, new and more specific methods of evaluating circadian changes in BP are needed to better clarify the abovementioned reciprocal influences.

Simultaneous Synthesis and Sintering of Titanium Carbide by HPCS(High Pressure-Self Combustion Sintering) (고압연소 소결(HPCS)법에 의한 탄화티타늄(TiC)의 합성 및 소결)

  • 김지헌;최상욱;조원승;조동수;오장환
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.5
    • /
    • pp.473-482
    • /
    • 1997
  • Titanium carbide(TiC) has a poor sinterability due to the strong covalent bond. Thus, it is generally fabricated by either hot pressing or pressureless-sintering at elevated temperature by the addition of sintering aids such as nickel(Ni), molybdenum(Mo) and cobalt(Co). However, these sintering methods have the following disadvantages; (1) the complicated process, (2) the high energy consumption, and (3) the possibility of leaving inevitable impurities in the product, etc. In order to reduce above disadvantages, we investigated the optimum conditions under which dense titanium carbide bodies could be synthesized and sintered simultaneously by high pressure self-combustion sintering(HPCS) method. This method makes good use of the explosive high energy from spontaneous exothermic reaction between titanium and carbon. The optimum conditions for the nearly full-densification were as follows; (1) The densification of sintered body becomes high by increasing the pressing pressure from 400kgf/$\textrm{cm}^2$ upto 1200 kgf/$\textrm{cm}^2$. (2) Instead of adding the coarse graphite or activated carbon, the fine particles of carbon black should be added as a carbon source. (3) The optimum molar ratio of carbon to titanium (C/Ti) was unity. In reality, titanium carbide body which were prepared under optimum conditions had relatively dense textures with the apparent porosity of 0.5% and the relative density of 98%.

  • PDF

Analysis of crack occurs under unsteady pressure and temperature in a natural gas facility by applying FGM

  • Eltaher, Mohamed A.;Attia, Mohamed A.;Soliman, Ahmed E.;Alshorbagy, Amal E.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.97-111
    • /
    • 2018
  • Cracking can lead to unexpected sudden failure of normally ductile metals subjected to a tensile stress, especially at elevated temperature. This article is raised to study the application of a composite material instead of the traditional carbon steel material used in the natural gas transmission pipeline because the cracks occurs in the pipeline initiate at its internal surface which is subjected to internal high fluctuated pressure and unsteady temperature according to actual operation conditions. Functionally graded material (FGM) is proposed to benefit from the ceramics durability and its surface hardness against erosion. FGM properties are graded at the radial direction. Finite element method (FEM) is applied and solved by ABAQUS software including FORTRAN subroutines adapted for this case of study. The stress intensity factor (SIF), temperatures and stresses are discussed to obtain the optimum FGM configuration under the actual conditions of pressure and temperature. Thermoelastic analysis of a plane strain model is adopted to study SIF and material response at various crack depths.

An Experimental Study of Water Vapor Pressure Change by Ambient Temperature at the Interface between Concrete and Fluid-Applied Membrane Layer

  • Ko, Jin-Soo;Kim, Byung-Yun;Park, Sung-Woo;Lee, Mun-Hwan;Lee, Sung-Bok
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.1
    • /
    • pp.15-23
    • /
    • 2009
  • Over about 30% of problems in construction is related to water-leaking, and the loss from this problem can incur as much as three times the cost of initial construction. Thus, water vapor pressure is known to be the primary cause of defective waterproofing. Accordingly, the theories on the relationship between water pressure and temperature as well as damp-proofing volume of concrete and the change in vapor pressure volume were reviewed and analyzed in this study by making test samples after spraying a dampness remover and applying waterproofing materials to the prepared test specimens. The result of measuring water vapor pressure with the surface temperature of the waterproofing (fluid-applied membrane) layer at the experimental temperature setting of about $10^{\circ}C$, which is the annual average temperature of Seoul, indicated that (1) the temperature of the fluid-applied membrane elevated to about $40^{\circ}C$, and the water vapor pressure generated from the fluid-applied membrane was about 0.03 N/mm 2 when the surface temperature of the waterproofing layer was raised to about $80^{\circ}C$. (2) when the temperature of the fluid-applied membrane of the waterproofing layer was raised from $30^{\circ}C$ to $35^{\circ}C$, water vapor pressure of about 0.01 N/mm 2 was generated, and (3) when a thermal source was applied to the fluid-applied membrane (waterproofing) layer, the temperature increased from $35^{\circ}C$ to $40^{\circ}C$, and approximately $0.005\;N/mm^2$ of water vapor pressure was generated.

An Experimental Study of Water Vapor Pressure that occurs at the Interface of a Fluid-Applied Membrane and Concrete (콘크리트와 도막 방수층 계면에 발생되는 수증기압에 관한 실험적 연구)

  • Ko, Jin-Soo;Kim, Mun-Hee;Lee, Sung-Bok;Shin, Yun-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.147-150
    • /
    • 2006
  • Of the total defects that have occurred recently in the Korean construction market, over 30% are caused by the construction of defective waterproofing, and the phenomenon of air pockets in the waterproofing layer, which is caused by the concrete vapor pressure, is known to be the primary cause of defective waterproofing. Accordingly, in this study the theory about the relationship between water pressure and temperature as well as the damp-proofing volume of concrete and, then, the change of vapor pressure volume was measured and analyzed by making a test sample after spraying a dampness remover and a waterproofing material to a prepared test body. As a result of measuring the water vapor pressure for the surface temperature of the waterproofing layer with the fluid-applied membrane temperature based on about $10^{\circ}C$, which is the average temperature of Seoul, it was found that first, the fluid-applied membrane elevated up to about $40^{\circ}C$, and the water vapor pressure generated from the fluid-applied membrane was about $0.3kgf/cm^2$ when the surface temperature of the waterproofing layer was raised up to about $80^{\circ}C$. Second, when the fluid-applied membrane temperature of the waterproofing layer was raised from $30^{\circ}C\;to\;35^{\circ}C,\;about\;0.1kgf/cm^2$ of water vapor pressure was generated, and when supplying a thermal source to raise the fluid-applied membrane temperature of the waterproofing layer from $35^{\circ}C\;to\;40^{\circ}C$, approximately $0.05kgf/cm^2$ of water vapor pressure was generated.

  • PDF

Study on hydrocarbon reforming using microchannel catalysts (마이크로 채널을 이용한 탄화수소 연료개질에 관한 연구)

  • Bae, Gyu-Jong;Park, Joon-Geun;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.33-36
    • /
    • 2007
  • Currently, many structured catalysts using microchannel are researched to apply to fuel reforming. In this paper, ceramic monolith and metal mesh as structured catalysts are investigated for catalytic autothermal reforming. When GHSV increases, each structured catalyst has better performances(hydrogen production, fuel conversion) than packed bed catalyst for autothermal reforming. The major causes seem to be the elevated heat and mass transfer, gas phase reaction and redistribution of packed bed due to high pressure drop.

  • PDF

Changes in Water and Electrolyte Distribution and Blood Glucose Concentration following Irreversible Hemorrhagic Shock (비가역성 실혈성 쇽에서 본 가토심근, 혈장의 전해질 및 혈당량 변화)

  • Kim, Ki-Whan;Nam, Kee-Yong
    • The Korean Journal of Physiology
    • /
    • v.2 no.1
    • /
    • pp.47-52
    • /
    • 1968
  • Twenty white rabbits anesthetized with nembutal (30 mg/kg) were employed in this experiment. Five of them served as controls; the remaining rabbits as experimental group were subjected to irreversible hemorrhagic shock. Shock was induced by bleeding the animals until mean blood pressure decreased to a level of 50-40 mmHg. This level of pressure was maintained for 3-4 hours, after which the drawn blood was reinfused. The reinfusion of blood caused the elevation of arterial pressure almost the control level for some minutes, after which a gradual and progressive decline of blood pressure became evident. This decline was thought to be the result from irreversible hemorrhagic shock. When mean blood pressure declined to less than 50 mmHg, chest was opened and samples of arterial blood and left ventricular muscle were taken. Left ventricular muscle and blood plasma were analyzed for potassium, sodium, chloride and water content. Blood glucose concentration was determined by Somogyi-Nelson's method. Extracellular and intracellular myocardial water and electrolyte content were calculated on the basis that electrolytes are distributed between plasma water and interstitial water according to Gibbs-Donnan equilibrium. In this calculation extracellular water was substituted for Na space. The findings obtained were as follows: 1. The concentration of blood glucose was 87mg% in the controls and it rose to 222 mg% in shock (P<0.01). 2. Plasma potassium elevated significantly from 3.3 mEq/l in controls to 8.0 mEq/l in shock (P<0.01), while small decreases in sodium (151-146 mEq/l) and chloride (102-96 mEq/l) were observed (P<0.3, P<0.1), 3. The changes of blood water content (83.1-84.3%) and cardiac water content (77.5-78.3 gm/100gm WT) were observed. 4. In control animals myocardial potassium levels which averaged 30.2 mEq/100 gmDT rose significantly to 40.3 mEq/100 gmDT in shock (P<0.01), while moderate decreases in sodium(16.3-14.3 mEq/100 gmDT) were observed in shock. 5. The calculated transmembrane resting potential of left ventricular muscle of control animals averaged 95 mV, while rabbits in shock averaged 77 mV. (P <0.01). The findings of this experiment do not correspond with the conclusions that myocardial depression seems to be the cause of irreversible hemorrhagic shock, because the excitability of heart muscle is elevated. From the point of view that the lowered transmembrane resting potential, the cause of death in terminal stage of irreversible hemorrhagic shock may be ventricular fibrillation. It can't be said, however, that the lowered transmembrane resting potential is responsible for the transition from reversible to irreversible hemorrhagic shock. The marked increase in blood glucose suggested that glycogenolysis in the liver is favorably active in shock.

  • PDF

A Rabbit Model of Fat Graft Recipient Site Preconditioning Using External Negative Pressure

  • Lee, Jung Woo;Han, Yea Sik;Kim, Sin Rak;Kim, Han Kyeol;Kim, Hyun;Park, Jin Hyung
    • Archives of Plastic Surgery
    • /
    • v.42 no.2
    • /
    • pp.150-158
    • /
    • 2015
  • Background Fat is widely used in soft tissue augmentation. Nevertheless, it has an unpredictably high resorption rate. Clinically, external expansion with negative pressure is used to increase fat graft survival. In this study, fat graft recipient sites were preconditioned by external application of negative pressure in order to test for improvements in vascularity and fat graft survival. Methods Negative pressure was applied randomly to either the left or right dorsal ear of 20 New Zealand male white rabbits at a pressure of -125 mm Hg. The negative pressure was removed one week after the skin perfusion was measured. The skin flap at each ear was elevated, and 1 g of fat was grafted above the dorsal perichondrium. After one week, the fat weight, microvessel density, mature vessel density of the skin and fat, and amount of glycerol released were measured. Three months after the grafting, the same measurements were performed, with the exception of glycerol release. Results The fat survival rate of the experimental group ($75.4%{\pm}3.9%$) was higher than that of the control group ($53.1%{\pm}4.3%$) (P<0.001). Skin perfusion was higher in the experimental group. The glycerol release in the experimental group was significantly higher than in the control. The microvessel density of the skin and fat was significantly higher in the experimental group. Three months after the grafting, the skin and fat mature vessel density was significantly higher in the experimental groups. Conclusions Negative pressure prior to fat grafting increased the vascularity of the recipient site, and, accordingly, enhanced fat graft survival.

Fabrication and Characterization of Ni-Cr Alloy Thin Films for Application to Precision Thin Film Resistors

  • Lee, Boong-Joo;Shin, Paik-Kyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.525-531
    • /
    • 2007
  • Ni(75 wt.%)-Cr(20 wt.%)-Al(3 wt.%)-Mn(4 wt.%)-Si(1 wt.%) alloy thin films were prepared using the DC magnetron sputtering process by varying the sputtering conditions such as power, pressure, substrate temperature, and post-deposition annealing temperature in order to fabricate a precision thin film resistor. For all the thin film resistors, sheet resistance, temperature coefficient of resistance (TCR), and crystallinity were analyzed and the effects of sputtering conditions on their properties were also investigated. The oxygen content and TCR of Ni-Cr-Al-Mn-Si resistors were decreased by increasing the sputtering pressure. Their sheet resistance, TCR, and crystallinity were enhanced by elevating the substrate temperature. In addition, the annealing of the resistor thin films in air at a temperature higher than $300^{\circ}C$ lead to a remarkable rise in their sheet resistance and TCR. This may be attributed to the improved formation of NiO layer on the surface of the resistor thin film at an elevated temperature.

Laminar Flame Speed Measurement using Combustion Pressure Trace in Constant Volume Spherical Chamber (정적 구형 용기 내 연소 압력을 이용한 층류화염속도측정에 대한 연구)

  • Byun, Jung Joo
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.2
    • /
    • pp.1-8
    • /
    • 2012
  • Laminar flame speeds of Methane at elevated temperatures and pressures were investigated using constant volume spherical chamber. Pressure trace during combustion was measured in each test and this was used in calculating laminar flame speed of Methane. To have large amount of data, experimental apparatus was fabricated with fully automatically controlled feature. A calculating code which calculates laminar flame speeds at various temperatures and pressures with one experimental result was used to calculate laminar flame speeds. The experimental and calculating methods were verified using the calculated laminar flame speed result with PREMIX code.