• Title/Summary/Keyword: Elemental carbon (EC)

Search Result 91, Processing Time 0.028 seconds

Potential Source of PM10, PM2.5, and OC and EC in Seoul During Spring 2016 (2016년 봄철 서울의 PM10, PM2.5 및 OC와 EC 배출원 기여도 추정)

  • Ham, Jeeyoung;Lee, Hae Jung;Cha, Joo Wan;Ryoo, Sang-Boom
    • Atmosphere
    • /
    • v.27 no.1
    • /
    • pp.41-54
    • /
    • 2017
  • Organic carbon (OC) and elemental carbon (EC) in $PM_{2.5}$ were measured using Sunset OC/EC Field Analyzer at Seoul Hwangsa Monitoring Center from March to April, 2016. The mean concentrations of OC and EC during the entire period were $4.4{\pm}2.0{\mu}gC\;m^{-3}$ and $1.4{\pm}0.6{\mu}gC\;m^{-3}$, respectively. OC/EC ratio was $3.4{\pm}1.0$. The average concentrations of $PM_{10}$ and $PM_{2.5}$ were $57.4{\pm}25.9$ and $39.7{\pm}19.8{\mu}g\;m^{-3}$, respectively, which were detected by an optical particle counter. The OC and EC peaks were observed in the morning, which were impacted by vehicle emission, however, their diurnal variations were not noticeable. This is determined to be contributed by the long-range transported OC or secondary formation via photochemical reaction by volatile organic compounds at afternoon. A conditional probability function (CPF) model was used to identify the local source of pollution. High concentrations of $PM_{10}$ and $PM_{2.5}$ were observed from the westerly wind, regardless of wind speed. When wind velocity was high, a mixing plume of dust and pollution during long-range transport from China in spring was observed. In contrast, pollution in low wind velocity was from local source, regardless of direction. To know the effect of long-range transport on pollution, a concentration weighted trajectory (CWT) model was analyzed based on a potential source contribution function (PSCF) model in which 75 percentiles high concentration was picked out for CWT analysis. $PM_{10}$, $PM_{2.5}$, OC, and EC were dominantly contributed from China in spring, and EC results were similar in both PSCF and CWT. In conclusion, Seoul air quality in spring was mainly affected by a mixture of local pollution and anthropogenic pollutants originated in China than the Asian dust.

Comparison of Diesel Exhaust Particle Concentration between Large Above-Underground Parking Lots (수도권 일부 대형상가 지상주차장 및 지하주차장의 공기중 디젤엔진배출 입자상물질의 공기중 농도 비교)

  • Kim, Boowook;Song, Dong-Woo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.4
    • /
    • pp.323-332
    • /
    • 2013
  • Objectives: This study was conducted in order to investigate the diesel exhaust particle(DEP) concentrations in the thirteen parking lots of large shopping complex. Methods: The real-time black carbon(BC) concentration was determined using an Aethalometer, and elemental/organic carbon concentration was determined according to the method of the National Institute for Occupational Safety and Health(NIOSH) 5040. The particle number concentration(NC), lung deposited surface area concentration(LDSA) and geometric mean diameter(GMD) were determined using a DiSCmini aerosol monitor. Results: The average concentration of BC, EC, OC, NC, LDSA and GMD were $19.1{\mu}g/m^3$, $12.6{\mu}g/m^3$, $51.5{\mu}g/m^3$, $94,000particles/cm^{-3}$, $298{\mu}m^2/cm^{-3}$ and 57 nm in all parking lots, respectively, approximately 3-fold higher than those found in the urban outdoor. The average concentration of BC were $21.3{\mu}g/m^3$ in underground parking lots, 3-fold higher than above parking lots. Conclusions: Therefore, the parking lots at the large shopping complex can be considered a potentially dangerous environment with a high concentration of DEP nanoparticles.

Opto-Chemical Characteristics of Visibility Impairment Using Semi-Continuous Aerosol Monitoring in an Urban Area during Summertime (에어로졸의 준실시간 관측에 의한 여름철 도시지역 시정 감쇄 현상의 광ㆍ화학적인 특성 분석)

  • 김경원;김영준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.647-661
    • /
    • 2003
  • For continuous monitoring of atmospheric visibility in the city of Kwanaju, Korea, a transmissometer system consisting of a transmitter and a receiver was installed at a distance of 1.91 km across the downtown Kwanaju. At the transmitter site an integrating nephelometer and an aethalometer were also installed to measure the scattering and absorption coefficients of the atmosphere, respectively. At the receiver site. an URG PM$_{2.5}$ cyclone sampler and an URG-VAPS (Versatile Air Pollutant Sampler) with three filter packs and two denuders were used to collect both PM$_{2.5}$ and PM$_{10}$ samples at a 2-hour or 12-hour sampling interval for aerosol chemical analysis. Sulfate, organic mass by carbon (OMC), nitrate, elemental carbon (EC) components of fine aerosol were the major contributors to visibility impairment. Diurnal variation of visibility during best-case days showed rapid improvement in the morning hours, while it was delayed until afternoon during the worst-case days. Aerosol mass concentration of each aerosol component for the worst-case was calculated to be 11.2 times larger than the best-case for (NH$_4$)$_2$SO$_4$(NHSO), 19.0 times for NH$_4$NO$_3$ (NHNO), 2.2 times for OMC, respectively. Also result shows that elemental carbon and fine soil (FS) were 3.7 and 2.2 times more than those of best-case. respectively- Sum of total contributions of wet NHSO and NHNO to light extinction was calculated to be 301 Mm$^{-1}$ for the worst-case. However, sum of contributions by dry NHSO and NHNO was calculated to be 123 Mm$^{-1}$ for the best case. Mass extinction efficiencies of fine and coarse particles were calculated to be 5.8$\pm$0.3 $m^2$/g and 1.8$\pm$0.1 $m^2$/g, respectively.ely.

Characteristics of Particulate Carbon in the Ambient Air in the Korean Peninsula (한반도 권역별 대기 중 입자상 탄소 특성 연구)

  • Lee, Yeong-jae;Park, Mi-kyung;Jung, Sun-a;Kim, Sun-jung;Jo, Mi-ra;Song, In-ho;Lyu, Young-sook;Lim, Yong-jae;Kim, Jung-hoon;Jung, Hae-jin;Lee, Sang-uk;Choi, Won-Jun;Ahn, Joon-young;Lee, Min-hee;Kang, Hyun-jung;Park, Seung-myeong;Seo, Seok-jun;Jung, Dong-hee;Hyun, Joo-kyeong;Park, Jong-sung;Hwang, Tae-kyung;Hong, You-deog;Hong, Ji-hyung;Shin, Hye-jung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.4
    • /
    • pp.330-344
    • /
    • 2015
  • Semi-continuous measurements of $PM_{2.5}$ mass, organic and elemental carbon were made for the period of January to October 2014, at six national air monitoring stations in Korea. OC and EC concentrations showed a clear seasonal variation with the highest in winter (January) and the lowest in summer (August). In winter, the high carbonaceous concentrations were likely influenced by increased fuel combustion from residential heating. OC and EC concentrations varied by monitoring stations with 5.9 and $1.7{\mu}g/m^3$ in Joongbu area, 4.2 and $1.2{\mu}g/m^3$ in Honam area, 4.0 and $1.3{\mu}g/m^3$ in Yeongnam area, 3.7 and $1.6{\mu}g/m^3$ in Seoul Metropolitan area, 3.0 and $0.8{\mu}g/m^3$ in Jeju Island, 2.9 and $0.7{\mu}g/m^3$ in Baengnyeong Island respectively. The concentrations of OC and EC comprised 9.6~ 15.5% and 2.4~ 4.7% of $PM_{2.5}$. Urban Joongbu area located adjacent to the intersection of several main roads showed the highest carbon concentration among six national air monitoring station. On the other hand, background Baengnyeong Island showed the lowest carbon concentration and the highest OC/EC ratio (4.5). During the haze episode, OC and EC were enhanced with increase in $PM_{2.5}$ about 1.3~ 3 and 1.3~ 4.0 times respectively. The concentrations of OC, EC in the Asian dust case are about 1~ 2.4 times greater than in the nondust case. The origins of air mass pathways arriving at Seoul, using the backward trajectory analysis, can be mostly classified into 6 groups (Sector I Northern Korea including the sea of Okhotsk, Sector II Northern China including Mongolia, Sector III Southern China, Sector IV South Pacific area, Sector V Japan, Sector VI Southern Korea area). When an air mass originating from northern China and Mongolia, the OC concentrations were the most elevated, with a higher OC/EC ratio (2.4~ 3.3), and accounting for 17% of $PM_{2.5}$ mass on average.

Estimation of Air Pollutant Emission Factors for Motorcycle (이륜자동차의 대기오염물질 배출계수 산정을 위한 연구)

  • Lim, Jae-Hyun;Kim, Hyun-Min;Lee, Sang-Moon;Kang, Hee-Jun;Lim, Yoon-Sung;Seo, Choong-Yeol;Kim, Jong-Choon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.1
    • /
    • pp.69-76
    • /
    • 2010
  • While increased use of motor cycles in the recent years for various demands could worsen air quality, only few studies have been conducted on estimation of emission factors and characterization of emissions from motorcycle. In this study, emissions from selected six models of motorcycle based on largest market share and production rate were investigated. To investigate gaseous and carbonaceous air pollutants, such as carbon monoxide (CO), total hydrocarbon (THC), nitrogen oxide ($NO_x$), elemental carbon (EC) and organic carbon (OC), total 124 motorcycles between 2003 and 2007 model year were tested with regulatory driving conditions, such as CVS-40 and CVS-47 mode. These motorcycles were further sub-categorized based on their displacement (< 50 cc, 50~150 cc, and $\geq$ 150 cc), type of stroke (2- and 4 strokes) and model year (2003~2005 and 2006~2007). Tested motorcycles with recent model year (2006~2007) exhibited less emissions of regulatory gaseous and carbonaceous air pollutants compared to old model year (2003~2005). Chemical analysis showed that CO present in highest concentration followed by THC and $NO_x$ for all tested motorcycles. Interestingly, two strokes motorcycle produced higher THC emission but less CO and $NO_x$ than those of four strokes. For all types of displacement and stroke, emission factors (gram per kilometer) of THC and CO except $NO_x$ with recent model year (2006~2007) showed decreased trend compared to old model year (2003~2005). In addition to this, due to mixed combustion between gasoline fuel and lubricant, two strokes motorcycle showed OC > EC emission trend.

Characteristics of Hazardous Air Pollutant Level in Road Tunnels in Seoul (서울시 터널의 유해대기오염물질 농도변화 특성 분석)

  • Park, Jin-A;Lee, Won-Young;Kim, Jin-A;Kim, Ik-Su;Kim, Hyun-Su;Jeong, Jong-Heup;Yun, Jung-Seop;Jung, Kweon;Eom, Seog-Won
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.6
    • /
    • pp.541-549
    • /
    • 2013
  • Objectives: We analyzed the characteristics of hazardous air pollutants (HAPs) in road tunnels in Seoul. Methods: Particle matter ($PM_{10}$), elemental carbon (EC), organic carbon (OC), and 16 species of polycyclic aromatic hydrocarbons (PAHs) in two road tunnels (NS tunnel and HJ tunnel) were sampled and analyzed from 2007 to 2011. Results: Levels of $PM_{10}$ and carbon ingredients which were mainly emitted from diesel-fueled vehicles showed a declining tendency in both road tunnels. PAHs levels in HJ were declining slightly while PAHs levels in the NS tunnel fluctuated considerably and showed an increasing tendency. Conclusions: These results suggested that the abatement project of diesel vehicle emissions by the Seoul metropolitan government from 2007 has had an impact on the reduction of DVE into the air, though there exist many things to consider for analyses.

Chemical Characterization of Water-Soluble Organic Acids in Size-Segregated Particles at a Suburban Site in Saitama, Japan

  • Bao, Linfa;Sakamoto, Kazuhiko
    • Asian Journal of Atmospheric Environment
    • /
    • v.3 no.1
    • /
    • pp.42-51
    • /
    • 2009
  • Saturated n-dicarboxylic acids ($C_2-C_7$, $C_9$), unsaturated dicarboxylic acids (maleic, fumaric, phthalic acid), ketocarboxylic acids (pyruvic, glyoxylic acid), and dicarbonyls (glyoxal, methylglyoxal) were determined in size-segregated samples with a high-volume Andersen air sampler at a suburban site in Saitama, Japan, May 12-17 and July 24-27, 2007 and January 22-31, 2008. The seasonal average concentrations of these detected organic acids were 670 $ng/m^3$, accounting for about 4.4-5.7% (C/C) of water-soluble organic carbon (WSOC) and 2.3-3.6% (C/C) of organic carbon (OC). The most abundant species of dicarboxylic acids was oxalic acid, followed by malonic, phthalic, or succinic acids. Glyoxylic acid and methyglyoxal were most abundant ketocarboxylic acid and dicarbonyl, respectively. Seasonal differences, size-segregated concentrations, and the correlations of these acids with ambient temperatures, oxidants, elemental carbon (EC), OC, WSOC, and ionic components were also discussed in terms of their corresponding sources and possible secondary formation pathways. The results suggested that photochemical reactions contributed more to the formation of particulate organic acids in Saitama suburban areas than did direct emissions from anthropogenic and natural sources. However, direct emissions of vehicles were also important sources of several organic acids in particles, such as phthalic and adipic acids, especially in winter.

Aethalometer-based Estimate of Mass Absorption Cross Section of Black Carbon Particles at an Urban Site of Gwangju (광주 지역에서 aethalometer 측정 블랙 카본 입자의 질량흡수단면 평가)

  • Park, Seung-Shik;Yu, Geun-Hye;Lee, Sang-Il;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.5
    • /
    • pp.727-734
    • /
    • 2018
  • In this study, real-time absorption coefficients of carbonaceous species in $PM_{2.5}$ was observed using a dual-spot 7-wavelength Aethalometer between November 1, 2016 and December 31, 2017 at an urban site of Gwangju. In addition, 24-hr integrated $PM_{2.5}$ samples were simultaneously collected at the same site and analyzed for organic carbon and elemental carbon (OC and EC) using the thermal-optical transmittance protocol. A main objective of this study was to estimate mass absorption cross section (MAC) values of black carbon (BC) particles at the study site using the linear regression between aethalometer-based absorption coefficient and filter-based EC concentration. BC particles observed at 880 nm is mainly emitted from combustion of fossil fuels, and their concentration is typically reported as equivalent BC concentration (eBC). eBC concentration calculated using MAC value of $7.77m^2/g$ at wavelength of 880 nm, which was proposed by a manufacturer, ranged from 0.3 to $7.4{\mu}g/m^3$ with an average value of $1.9{\pm}1.2{\mu}g/m^3$, accounting for 7.3% (1.5~20.9%) of $PM_{2.5}$. The relationship between aerosol absorption coefficients at 880 nm and EC concentrations provided BC MAC value of $15.2m^2/g$, ranging from 11.4 to $16.2m^2/g$. The eBC concentrations calculated using the estimated MAC of $15.2m^2/g$ were significantly lower than those reported originally from aethalometer, and ranged from 0.2 to $3.8{\mu}g/m^3$, with an average of $1.0{\pm}0.6{\mu}g/m^3$, accounting for 3.7% of $PM_{2.5}$ (0.8~10.7%). Result from this study suggests that if the MAC value recommended by the manufacturer is applied to calculate the equivalent BC concentration and radiative forcing due to BC absorption, they would result in significant errors, implying investigation of an unique MAC value of BC particles at a study site.

A Study on Exposure Indices for Diesel Engine Exhaust in Forklift Operating Areas (지게차 사용 사업장에서 디젤엔진배출물질 노출지표에 관한 연구)

  • Kim, Sangil;Park, Ji Young;Lee, Kyeongmin;Kim, Seung Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.1
    • /
    • pp.38-47
    • /
    • 2016
  • Objectives: The objective of this study was to determine the exposure levels of forklift operators to diesel engine exhaust(DEE) using black carbon(BC), elemental carbon(EC), and nitrogen dioxide($NO_2$) as indicators. Methods: A total of eight forklift operators in six collection companies were assessed over a period of two months from July to September 2015. BC was measured using a real-time monitor and respirable EC samples were analyzed using the NIOSH method 5040. $NO_2$ samples were collected using a passive badge-type sampler. Results: The geometric mean of BC, EC and $NO_2$ were $3.1-19.1{\mu}g/m^3$, $2.1-23.8{\mu}g/m^3$, and 12.5-166.6 ppb at all companies. When forklifts were operating both outside and inside, BC concentrations increased 2.0-5.6 times. The highest increase was observed when forklifts were operating indoors. The increase in BC concentrations varied by company(company A: 2.0 times, B: 3.2 times, C: 5.6 times, D: 2.1 times, E: 5.1 times, F: 2.6 times). The geometric mean of BC, EC, and $NO_2$ for the forklift operators was $9.6{\mu}g/m^3$, $7.9{\mu}g/m^3$, and 48.9 ppb, respectively. The geometric mean of BC, EC, and $NO_2$ for manufacturing workers was $9.3{\mu}g/m^3$, $0.9{\mu}g/m^3$, and 85.2 ppb, respectively. The mean BC and EC exposure levels for the forklift operators were slightly higher than those for manufacturing workers, but $NO_2$ levels for manufacturing workers were higher than those for the forklift operators(p>0.05). Multiple regression analysis revealed that diesel exhaust emissions standard, forklift weight and forklift manufacturer were the most influential factors in determining worker exposure. Conclusions: In the DEE work environment, workers who perform tasks within the workplace as well as inside forklifts as operators are likely to be exposed to a lack of ventilation. Further study of forklift operators' exposure to DEE indicators should be conducted to include a wider range of occupational and environmental situations, such as collection procedures, seasonal situations, types of fuel used, and number of forklifts.

Analysis of Poly Aromatic Hydrocarbon (PAH) Pollutants Originated from Local Road Dust by Spacial Measurements (공간 측정에 의한 도로변 발생 다환방향족탄화수소 연구)

  • Park, Da-Jeong;Cho, In-Hwan;Lee, Kwang-Yul;Park, Kihong;Lee, Yeong-Jae;Ahn, Joon-Young;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.3
    • /
    • pp.272-279
    • /
    • 2016
  • Understanding sources and contributions of $PM_{2.5}$ mass and particulate PAHs from traffic-related pollution can provide valuable information for alleviating air contamination from car emissions in urban areas. Two sampling sites at the Gwangju Institute of Science and Technology (GIST, $35.228^{\circ}N$, $126.843^{\circ}E$) and National institute of environmental research NamBu Supersite (NNBS, $35.226^{\circ}N$, $126.848^{\circ}E$) were selected for comprehensive road-oriented-PM investigations. Continuous measurements from optical particle sizer (OPS) and optical particle counter (OPC) with 24 hr integrated filter based samplers for organic carbon, water soluble organic carbon, and Poly Aromatic Hydrocarbons (PAHs) were conducted during Nov. 3 through 22 in 2014. As a result, $PM_{2.5}$ mass concentrations using OPC and OPS in NNBS presented about twice higher than in GIST due to road dust impacts based on wind direction analysis. In addition, ratios of elemental carbon (EC) to organic carbon (OC) and water insoluble organic carbon (WIOC) to organic carbon (OC) supported an additional evidence of the primary pollutant contributions oriented from road dust. PAHs related to 5 rings such as benzo(e&a)pyrene indicates higher associations.