• 제목/요약/키워드: Element Technology

검색결과 9,042건 처리시간 0.033초

A new method of predicting hotspot stresses for longitudinal attachments with reduced element sensitivities

  • Li, Chun Bao;Choung, Joonmo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.379-395
    • /
    • 2021
  • For the complicated structural details in ships and offshore structures, the traditional hotspot stress approaches are known to be sensitive to the element variables of element topologies, sizes, and integration schemes. This motivated to develop a new approach for predicting reasonable hotspot stresses, which is less sensitive to the element variables and easy to be implemented the real marine structures. The three-point bending tests were conducted for the longitudinal attachments with the round and rectangular weld toes. The tests were reproduced in the numerical simulations using the solid and shell element models, and the simulation technique was validated by comparing the experimental stresses with the simulated ones. This paper considered three hotspot stress approaches: the ESM method based on surface stress extrapolation, the Dong's method based on nodal forces along a weld toe, and the proposed method based on nodal forces perpendicular to an imaginary vertical plane at a weld toe. In order to study the element sensitivities of each method, 16 solid element models and 8 shell element models were generated under the bending and tension loads, respectively. The element sensitivity was analyzed in terms of Stress Concentration Factors (SCFs) in viewpoints of two statistical quantities of mean and bias with respect to the reference SCFs. The average SCFs predicted by the proposed method were remarkably in good agreement with the reference SCFs based on the experiments and the ship rules. Negligibly small Coefficients of Variation (CVs) of the SCFs, which is measure of statistical bias, were drawn by the proposed method.

On the usefulness of discrete element computer modeling of particle packing for material characterization in concrete technology

  • Stroeven, P.;Hu, J.;Stroeven, M.
    • Computers and Concrete
    • /
    • 제6권2호
    • /
    • pp.133-153
    • /
    • 2009
  • Discrete element modeling (DEM) in concrete technology is concerned with design and use of models that constitute a schematization of reality with operational potentials. This paper discusses the material science principles governing the design of DEM systems and evaluates the consequences for their operational potentials. It surveys the two families in physical discrete element modeling in concrete technology, only touching upon probabilistic DEM concepts as alternatives. Many common DEM systems are based on random sequential addition (RSA) procedures; their operational potentials are limited to low configuration-sensitivity features of material structure, underlying material performance characteristics of low structure-sensitivity. The second family of DEM systems employs concurrent algorithms, involving particle interaction mechanisms. Static and dynamic solutions are realized to solve particle overlap. This second family offers a far more realistic schematization of reality as to particle configuration. The operational potentials of this family involve valid approaches to structure-sensitive mechanical or durability properties. Illustrative 2D examples of fresh cement particle packing and pore formation during maturation are elaborated to demonstrate this. Mainstream fields of present day and expected application of DEM are sketched. Violation of the scientific knowledge of to day underlying these operational potentials will give rise to unreliable solutions.

Research on the optimization method for PGNAA system design based on Signal-to-Noise Ratio evaluation

  • Li, JiaTong;Jia, WenBao;Hei, DaQian;Yao, Zeen;Cheng, Can
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.2221-2229
    • /
    • 2022
  • In this research, for improving the measurement performance of Prompt Gamma-ray Neutron Activation Analysis (PGNAA) set-up, a new optimization method for set-up design was proposed and investigated. At first, the calculation method for Signal-to-Noise Ratio (SNR) was proposed. Since the SNR could be calculated and quantified accurately, the SNR was chosen as the evaluation parameter in the new optimization method. For discussing the feasibility of the SNR optimization method, two kinds of PGNAA set-ups were designed in the MCNP code, based on the SNR optimization method and the previous signal optimization method, respectively. Meanwhile, the single element spectra analysis method was proposed, and the analysis effect of single element spectra as well as element sensitivity were used for comparing the measurement performance. Since the simulation results showed the better measurement performance of set-up designed by SNR optimization method, the experimental set-ups were built for the further testing, finally demonstrating the feasibility of the SNR optimization method for PGNAA setup design.

꽃문양을 활용한 레트로 테크널러지 패션 디자인 연구 -CAD를 활용하여- (A Study on the Retro Technology Fashion Design with Floral Patterns -through CAD-)

  • 정미진
    • 복식
    • /
    • 제56권7호
    • /
    • pp.105-120
    • /
    • 2006
  • Today's radical change of environment and technology spreaded high-technology art by cutting across a general idea of art, expressed machine aesthetic in fashion style by influencing materials and production processes of fashion. The purpose of this research is to take another look at the value and the importance of ornaments in terms of fashion design, to overcome the negative aspect of Technology Fashion by designing Retro Technology Fashion that harmonizes reason with sensibilities through floral patterns. The results of this study are as followings. 1. If Retro technology Fashion was analyzed by time and space element that are postmodernism techniques, there are Ethnic Technology Fashion that are based on space and historical Technology Fashion that are based on time. In terms of spare element, there is the hybrid of revival of exotic folklore with Technology fashion. In terms of time element, there is the hybrid of costumes of before 20th Century with Technology Fashion. It means unifying detail or silhouette of costumes of ancient time to modern time wit Technology Fashion. For another time element, the hybrid of retro fashion after 20th Century with Technology Fashion. The retro nostalgia is revived by the floral patterns or silhouette of Hippie fashion unified with Technology Fashion. 2. Based on above research, Retro Technology Fashion with floral pattern on CAD were designed. As the results, for Ethno Fashion that is spatial retro, 'Asian Technology fashion' was designed with bright colors, China collar that are oriental, and vinyl material. For historical Technology fashion that are based on time, 'Space Middle Age' was designed with tight silhouette, party colored pants and plastic material.

포렌식 관점에서의 Element 인스턴트 메신저 아티팩트 분석 (Forensic Analysis of Element Instant Messenger Artifacts)

  • 조재민;변현수;윤희서;서승희;이창훈
    • 정보보호학회논문지
    • /
    • 제32권6호
    • /
    • pp.1113-1120
    • /
    • 2022
  • 최근 개인정보보호를 목적으로 데이터를 암호화해 저장하고 보안에 초점을 맞춰 종단 간 암호화 등의 서비스를 제공하는 메신저들이 등장하면서 수사에 어려움을 겪고 있다. 이에 보안 메신저를 악용하는 범죄사례는 늘고 있지만, 보안 메신저에 대한 데이터 복호화 연구는 필요하다. Element 보안 메신저는 대화 참여자만 대화 이력을 확인할 수 있도록 종단 간 암호화 기능을 제공하고 있으나 이를 복호화하는 연구는 미흡하다. 따라서 본 논문에서는 종단 간 암호화 기능을 제공하는 인스턴트 메신저 Element를 분석하고, 사용자의 패스워드 없이 Windows 자격 증명 관리자 서비스에 저장된 복호화키를 활용하여 암호화된 보안 채팅방의 이력을 평문으로 확인하는 방안을 제안한다. 또한, 디지털 포렌식 수사관점에서 유의미한 일반 및 보안 채팅 관련 아티팩트를 분석한 결과를 정리한다.

A simple method of stiffness matrix formulation based on single element test

  • Mau, S.T.
    • Structural Engineering and Mechanics
    • /
    • 제7권2호
    • /
    • pp.203-216
    • /
    • 1999
  • A previously proposed finite element formulation method is refined and modified to generate a new type of elements. The method is based on selecting a set of general solution modes for element formulation. The constant strain modes and higher order modes are selected and the formulation method is designed to ensure that the element will pass the basic single element test, which in turn ensures the passage of the basic patch test. If the element is to pass the higher order patch test also, the element stiffness matrix is in general asymmetric. The element stiffness matrix depends only on a nodal displacement matrix and a nodal force matrix. A symmetric stiffness matrix can be obtained by either modifying the nodal displacement matrix or the nodal force matrix. It is shown that both modifications lead to the same new element, which is demonstrated through numerical examples to be more robust than an assumed stress hybrid element in plane stress application. The method of formulation can also be used to arrive at the conforming displacement and hybrid stress formulations. The convergence of the latter two is explained from the point of view of the proposed method.

Improvement of the Representative Volume Element Method for 3-D Scaffold Simulation

  • Cheng Lv-Sha;Kang Hyun-Wook;Cho Dong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1722-1729
    • /
    • 2006
  • Predicting the mechanical properties of the 3-D scaffold using finite element method (FEM) simulation is important to the practical application of tissue engineering. However, the porous structure of the scaffold complicates computer simulations, and calculating scaffold models at the pore level is time-consuming. In some cases, the demands of the procedure are too high for a computer to run the standard code. To address this problem, the representative volume element (RVE) theory was introduced, but studies on RVE modeling applied to the 3-D scaffold model have not been focused. In this paper, we propose an improved FEM-based RVE modeling strategy to better predict the mechanical properties of the scaffold prior to fabrication. To improve the precision of RVE modeling, we evaluated various RVE models of newly designed 3-D scaffolds using FEM simulation. The scaffolds were then constructed using microstereolithography technology, and their mechanical properties were measured for comparison.

HIGHER ORDER FULLY DISCRETE SCHEME COMBINED WITH $H^1$-GALERKIN MIXED FINITE ELEMENT METHOD FOR SEMILINEAR REACTION-DIFFUSION EQUATIONS

  • S. Arul Veda Manickam;Moudgalya, Nannan-K.;Pani, Amiya-K.
    • Journal of applied mathematics & informatics
    • /
    • 제15권1_2호
    • /
    • pp.1-28
    • /
    • 2004
  • We first apply a first order splitting to a semilinear reaction-diffusion equation and then discretize the resulting system by an $H^1$-Galerkin mixed finite element method in space. This semidiscrete method yields a system of differential algebraic equations (DAEs) of index one. A priori error estimates for semidiscrete scheme are derived for both differ-ential as well as algebraic components. For fully discretization, an implicit Runge-Kutta (IRK) methods is applied to the temporal direction and the error estimates are discussed for both components. Finally, we conclude the paper with a numerical example.

Mesh Simplification and Adaptive LOD for Finite Element Mesh Generation

  • Date, Hiroaki;Kanai, Satoshi;Kishinami, Takeshi;Nishigaki, Ichiro
    • International Journal of CAD/CAM
    • /
    • 제6권1호
    • /
    • pp.73-79
    • /
    • 2006
  • In this paper, we propose a new triangular finite element mesh generation method based on simplification of high-density mesh and adaptive Level-of-Detail (LOD) methods for efficient CAE. In our method, mesh simplification is used to control the mesh properties required for FE mesh, such as the number of triangular elements, element shape quality and size while keeping the specified approximation tolerance. Adaptive LOD methods based on vertex hierarchy according to curvature and region of interest, and global LOD method preserving density distributions are also proposed in order to construct a mesh more appropriate for CAE purpose. These methods enable efficient generation of FE meshes with properties appropriate for analysis purpose from a high-density mesh. Finally, the effectiveness of our approach is shown through evaluations of the FE meshes for practical use.

평금형을 통한 3차원 압출의 정상상태 유한요소해석 (Steady-state finite element analysis of three-dimensional extrusion of sections through square die)

  • 이승훈;이춘만
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.231-234
    • /
    • 1998
  • This study presents steady-state finite element analysis of three-dimensional hot extrusion of sections through square dies. The objective of this study is to develop a steady-state finite element method for hot extrusion through square dies, and to provide theoretical basis for the optimal die design and process control in the extrusion technology. In the present work, steady-state assumption is applied to both analyses of deformation and temperature. The analysis of temperature distribution includes heat transfer. Convection like element is adopted for the heat transfer analysis between billet and container, and also billet and die. Distributions of temperature, effective strain rate, velocity and mean stress are discussed to design extrusion die effectively.

  • PDF