• Title/Summary/Keyword: Electrothermal vaporization

Search Result 5, Processing Time 0.017 seconds

Polymer (Polydimethylsiloxane (pdms)) Microchip Plasma with Electrothermal Vaporization for the Determination of Metal Ions in Aqueous Solution

  • Ryu, Won-Kyung;Kim, Dong-Hoon;Lim, H.B.;Houk, R.S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.553-556
    • /
    • 2007
  • We previously reported a 27.12 MHz inductively coupled plasma source at atmospheric pressure for atomic emission spectrometry based on polymer microchip plasma technology. For the PDMS polymer microchip plasma, molecular emission was observed, but no metallic detection was done. In this experiment, a lab-made electrothermal vaporizer (ETV) with tantalum coil was connected to the microchip plasma for aqueous sample introduction to detect metal ions. The electrode geometry of this microchip plasma was redesigned for better stability and easy monitoring of emission. The plasma was operated at an rf power of 30-70 W using argon gas at 300 mL/min. Gas kinetic temperatures between 800-3200 K were obtained by measuring OH emission band. Limits of detection of about 20 ng/mL, 96.1 ng/mL, and 1.01 μ g/mL were obtained for alkali metals, Zn, and Pb, respectively, when 10 μ L samples in 0.1% nitric acid were injected into the ETV.

The Fundamental Studies and Development of Modified Electrothermal Vaporization Hollow Cathode Glow Discharge Cell (개선된 전열증기화 속빈음극관 글로우 방전셀의 기초연구 및 개발)

  • Lee, Seong-Hun;Cho, Won-Bo;Jeong, Jong-Pil;Choi, Woo-Chang;Kim, Kyu-Whan;Woo, Jeong-Su;Lee, Chang-Su;Kang, Dong-Hyun;Lee, Sang-Chun
    • Analytical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.514-520
    • /
    • 2002
  • The electrothermal vaporization (ETV) hollow cathode glow discharge atomic emission spectrometer for analysis of liquid sample has been developed and characterized. This system has improved the sample introduction method of electrothermal vaporization and the hollow cathode glow discharge. The sample introduction method was possible to provide high analyte transport efficiency to the plasma by helix coil made of tungsten material. In addition, small volume samples (<$30{\mu}{\ell}$) could be used. The system has glow discharge cell with special design for improvement of precision. The effect of discharge parameters such as discharge power, gas flow rate has been studied to find optimum condition. The emitted light was effectively carried into detector by fiber optic cable in UV region. The calibration curve of Pb, Cd were obtained with 3 samples.

Development of Analytical Techniques for Human Serum and Urine by Using Glow Discharge (글로우 방전을 이용한 혈청과 뇨의 분석기술 개발)

  • Lee, Sang Chun;Choi, Kyung-Soo;Son, Eun-Ho;Sim, Young-Jin
    • Analytical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.167-173
    • /
    • 1998
  • An electrothermal vaporization-hollow cathode glow discharge-atomic emission spectrometer(ETV-HCGD-AES) has been developed for detecting heavy metals in human serum and urine samples. Fisrt of all, we designed a glow discharge cell for atomic emission spectrometry and its analytical performance was studied with the standard reference materials(SRMs) purchased from the NIST. Practically, the ETV-HCGD-AES demonstrated better instrumental sensitivity and selectivity for detecting Hg and Pb in the SRMs, serum and urine, than ICP-OES since the ETV-HCGD-AES was not required the complicate sample digestion procedure, which improved sample transportation efficiency.

  • PDF