• 제목/요약/키워드: Electrophysiological monitoring

검색결과 16건 처리시간 0.02초

Secondary Neurulation Defects-1 : Retained Medullary Cord

  • Kim, Kyung Hyun;Lee, Ji Yeoun;Wang, Kyu-Chang
    • Journal of Korean Neurosurgical Society
    • /
    • 제63권3호
    • /
    • pp.314-320
    • /
    • 2020
  • Retained medullary cord (RMC) is a relatively recent term. Pang et al. newly defined the RMC as a late arrest of secondary neurulation leaving a non-functional vestigial portion at the tip of the conus medullaris. RMC, which belongs to the category of closed spinal dysraphism, is a cord-like structure that is elongated from the conus toward the cul-de-sac. Because intraoperative electrophysiological confirmation of a non-functional conus is essential for the diagnosis of RMC, only a tentative or an assumptive diagnosis is possible before surgery or in cases of limited surgical exposure. We suggest the term 'possible RMC' for these cases. An RMC may cause tethered cord syndrome and thus requires surgery. This article reviews the literature to elucidate the pathoembryogenesis, clinical significance and treatment of RMCs.

임상신경생리 분야에서의 신경생리적 검사법의 응용 (Application of Neurophysiological Studies in Clinical Neurology)

  • 이광우;박경석
    • Annals of Clinical Neurophysiology
    • /
    • 제1권1호
    • /
    • pp.1-9
    • /
    • 1999
  • Since Hans Berger reported the first paper on the human electroencephalogram in 1920s, huge technological advance have made it possible to use a number of electrophysiological approaches to neurological diagnosis in clinical neurology. In majority of the neurology training hospitals they have facilities of electroencephalography(EEG), electromyography(EMG), evoked potentials(EP), polysomnography(PSG), electronystagmography(ENG) and, transcranial doppler(TCD) ete. Clinicials and electrophysiologists should understand the technologic characteristics and general applications of each electrophysiological studies to get useful informations with using them in clinics. It is generally agreed that items of these tests are selected under the clinical examination, the tests are performed by the experts, and the test results are interpretated under the clinical background. Otherwise these tests are sometimes useless and lead clinicians to misunderstand the lesion site, the nature of disease, or the disease course. In this sense the clinical utility of neurophysiological tests could be summerized in the followings. First, the abnormal functioning of the nervous system and its environments can be demonstrated when the history and neurological examinations are equivocal. Second, the presence of clinically unsuspected malfunction in the nervous system can be revealed by those tests. Finally the objective changes can be monitored over time in the patient's status. Also intraoperative monitoring technique becomes one of the important procedures when the major operations in the posterior fossa or in the spinal cord are performed. In 1996, the Korean Society for Clinical Neurophysiology(KSCN) was founded with the hope that it will provide the members with the comfortable place for discussing their clinical and academic experience, exchanging new informations, and learning new techniques of the neurophysiological tests. The KSCN could collaborate with the International Federation of Clinical Neurophysiology(IFCN) to improve the level of the clinical neurophysiologic field in Korea as will as in Asian region.1 In this paper the clinical neurophysiological tests which are commonly used in clinical neurology and which will be delt with and educated by the KSCN in the future will be discussed briefly in order of EEG, EMG, EP, PSG, TCD, ENG, and Intraoperative monitoring.

  • PDF

Intraoperative Neurophysiological Monitoring : A Review of Techniques Used for Brain Tumor Surgery in Children

  • Kim, Keewon;Cho, Charles;Bang, Moon-suk;Shin, Hyung-ik;Phi, Ji-Hoon;Kim, Seung-Ki
    • Journal of Korean Neurosurgical Society
    • /
    • 제61권3호
    • /
    • pp.363-375
    • /
    • 2018
  • Intraoperative monitoring (IOM) utilizes electrophysiological techniques as a surrogate test and evaluation of nervous function while a patient is under general anesthesia. They are increasingly used for procedures, both surgical and endovascular, to avoid injury during an operation, examine neurological tissue to guide the surgery, or to test electrophysiological function to allow for more complete resection or corrections. The application of IOM during pediatric brain tumor resections encompasses a unique set of technical issues. First, obtaining stable and reliable responses in children of different ages requires detailed understanding of normal age-adjusted brain-spine development. Neurophysiology, anatomy, and anthropometry of children are different from those of adults. Second, monitoring of the brain may include risk to eloquent functions and cranial nerve functions that are difficult with the usual neurophysiological techniques. Third, interpretation of signal change requires unique sets of normative values specific for children of that age. Fourth, tumor resection involves multiple considerations including defining tumor type, size, location, pathophysiology that might require maximal removal of lesion or minimal intervention. IOM techniques can be divided into monitoring and mapping. Mapping involves identification of specific neural structures to avoid or minimize injury. Monitoring is continuous acquisition of neural signals to determine the integrity of the full longitudinal path of the neural system of interest. Motor evoked potentials and somatosensory evoked potentials are representative methodologies for monitoring. Free-running electromyography is also used to monitor irritation or damage to the motor nerves in the lower motor neuron level : cranial nerves, roots, and peripheral nerves. For the surgery of infratentorial tumors, in addition to free-running electromyography of the bulbar muscles, brainstem auditory evoked potentials or corticobulbar motor evoked potentials could be combined to prevent injury of the cranial nerves or nucleus. IOM for cerebral tumors can adopt direct cortical stimulation or direct subcortical stimulation to map the corticospinal pathways in the vicinity of lesion. IOM is a diagnostic as well as interventional tool for neurosurgery. To prove clinical evidence of it is not simple. Randomized controlled prospective studies may not be possible due to ethical reasons. However, prospective longitudinal studies confirming prognostic value of IOM are available. Furthermore, oncological outcome has also been shown to be superior in some brain tumors, with IOM. New methodologies of IOM are being developed and clinically applied. This review establishes a composite view of techniques used today, noting differences between adult and pediatric monitoring.

수술 중 신경계 감시 (Intraoperative Neuromonitoring)

  • 서대원
    • Annals of Clinical Neurophysiology
    • /
    • 제10권1호
    • /
    • pp.1-12
    • /
    • 2008
  • Intraoperative neuromonitoring (INM) is well known to be useful method to reduce intraoperative complications during the surgery of nervous system lesions. Evoked potentials are most commonly used among the electrophysiological tests. Brainstem auditory evoked potentials are for detecting the problems along the auditory pathways including the eighth cranial nerve and brainstem. Somatosensory evoked potentials are applied for preventing the spinal cord lesions. The INM is affected by many factors. In order to perform an optimal INM, the confounding factors including technical, anesthetical, and individual factors should be kept well under control. INM has frequent electrophysiologic changes during the surgery and it might be helpful to keep one's eyes on which monitoring modalities are reluctant to change during each operation. The skillful monitoring and timely interpretation of electrophysiologic changes can drive the patient to be undergone surgery, even in high surgical risk group.

  • PDF

급성저혈압에 의한 내측전정신경핵 신경세포의 흥분성 변화를 분석하기 위한 테트로드 기법의 적용 (Application of Tetrode Technology for Analysis of Changes in Neural Excitability of Medial Vestibular Nucleus by Acute Arterial Hypotension)

  • 김영;구호;박병림;문세진;양승범;김민선
    • Research in Vestibular Science
    • /
    • 제17권4호
    • /
    • pp.142-151
    • /
    • 2018
  • Objectives: Excitability o medial vestibular nucleus (MVN) in the brainstem can be affected by changes in the arterial blood pressure. Several animal studies have demonstrated that acute hypotension results in the alteration of multiunit activities and expression of cFos protein in the MVN. In the field of extracellular electrophysiological recording, tetrode technology and spike sorting algorithms can easily identify single unit activity from multiunit activities in the brain. However, detailed properties of electrophysiological changes in single unit of the MVN during acute hypotension have been unknown. Methods: Therefore, we applied tetrode techniques and electrophysiological characterization methods to know the effect of acute hypotension on single unit activities of the MVN of rats. Results: Two or 3 types of unit could be classified according to the morphology of spikes and firing properties of neurons. Acute hypotension elicited 4 types of changes in spontaneous firing of single unit in the MVN. Most of these neurons showed excitatory responses for about within 1 minute after the induction of acute hypotension and then returned to the baseline activity 10 minutes after the injection of sodium nitroprusside. There was also gradual increase in spontaneous firing in some units. In contrast small proportion of units showed rapid reduction of firing rate just after acute hypotension. Conclusions: Therefore, application of tetrode technology and spike sorting algorithms is another method for the monitoring of electrical activity of vestibular nuclear during acute hypotension.

Influencing Factors Analysis of Facial Nerve Function after the Microsurgical Resection of Acoustic Neuroma

  • Hong, WenMing;Cheng, HongWei;Wang, XiaoJie;Feng, ChunGuo
    • Journal of Korean Neurosurgical Society
    • /
    • 제60권2호
    • /
    • pp.165-173
    • /
    • 2017
  • Objective : To explore and analyze the influencing factors of facial nerve function retainment after microsurgery resection of acoustic neurinoma. Methods : Retrospective analysis of our hospital 105 acoustic neuroma cases from October, 2006 to January 2012, in the group all patients were treated with suboccipital sigmoid sinus approach to acoustic neuroma microsurgery resection. We adopted researching individual patient data, outpatient review and telephone followed up and the House-Brackmann grading system to evaluate and analyze the facial nerve function. Results : Among 105 patients in this study group, complete surgical resection rate was 80.9% (85/105), subtotal resection rate was 14.3% (15/105), and partial resection rate 4.8% (5/105). The rate of facial nerve retainment on neuroanatomy was 95.3% (100/105) and the mortality rate was 2.1% (2/105). Facial nerve function when the patient is discharged from the hospital, also known as immediate facial nerve function which was graded in House-Brackmann : excellent facial nerve function (House-Brackmann I-II level) cases accounted for 75.2% (79/105), facial nerve function III-IV level cases accounted for 22.9% (24/105), and V-VI cases accounted for 1.9% (2/105). Patients were followed up for more than one year, with excellent facial nerve function retention rate (H-B I-II level) was 74.4% (58/78). Conclusion : Acoustic neuroma patients after surgery, the long-term (${\geq}1year$) facial nerve function excellent retaining rate was closely related with surgical proficiency, post-operative immediate facial nerve function, diameter of tumor and whether to use electrophysiological monitoring techniques; while there was no significant correlation with the patient's age, surgical approach, whether to stripping the internal auditory canal, whether there was cystic degeneration, tumor recurrence, whether to merge with obstructive hydrocephalus and the length of the duration of symptoms.

2018 심방세동 카테터 절제술 대한민국 진료지침: PART III

  • 이정명;정동섭;유희태;박형섭;심재민;김주연;김준;윤남식;오세일;노승영;조영진;김기훈
    • International Journal of Arrhythmia
    • /
    • 제19권3호
    • /
    • pp.285-339
    • /
    • 2018
  • Catheter ablation of atrial fibrillation (AF) is one of the most complex interventional electrophysiological procedures. The success of AF ablation is based in large part on freedom from AF recurrence based on electrocardiography (ECG) monitoring. Arrhythmia monitoring can be performed with the use of noncontinuous or continuous ECG monitoring tools. AF ablation is an invasive procedure that entails risks, most of which are present during the acute procedural period. However, complications can also occur in the weeks or months following ablation. Recognizing common symptoms after AF ablation and distinguishing those that require urgent evaluation and referral to an electrophysiologist is an important part of follow-up after AF ablation. This section reviews the complications associated with catheter ablation procedures performed to treat AF. The types and incidence of complications are presented, their mechanisms are explored, and the optimal approach to prevention and treatment is discussed. Finally, surgical and hybrid AF ablation technology and the indications for concomitant open or closed surgical ablation of AF, stand-alone and hybrid surgical ablation of AF are covered in this section.

Initial Experience with Total Thoracoscopic Ablation

  • Lee, Hee Moon;Chung, Su Ryeun;Jeong, Dong Seop
    • Journal of Chest Surgery
    • /
    • 제47권1호
    • /
    • pp.1-5
    • /
    • 2014
  • Background: Recently, a hybrid surgical-electrophysiological (EP) approach for confirming ablation lines in patients with atrial fibrillation (AF) was suggested. The aim of this approach was to overcome the limitations of current surgery- and catheter-based techniques to yield better outcomes. Methods: Ten consecutive patients with AF underwent total thoracoscopic ablation (TTA) following transvenous catheter EP ablation (residual gap and cavotricuspid isthmus [CTI] ablation). Holter monitoring was performed 6 months postoperatively. Results: Ten patients (90% with persistent AF) underwent successful hybrid procedures, and there was no in-hospital mortality. An EP study was performed in 8 patients and showed that successful antral ablation in all pulmonary veins was achieved in 7 of them. The median follow-up duration was 7.63 months (range, 6.7 to 11.6 months). Nine patients underwent Holter monitoring 6 months postoperatively, and the results indicated an underlying sinus rhythm without AF, atrial flutter, or atrial tachycardia lasting more than 30 seconds in all of the patients. There was no recurrence of AF during follow-up. Conclusion: A hybrid approach that consists of TTA followed by transvenous catheter EP ablation (residual gap and CTI ablation) yielded excellent outcomes in our patient population. A hybrid approach should be considered in patients with a high risk of AF recurrence.

Inorganic Materials and Process for Bioresorbable Electronics

  • Seo, Min-Ho;Jo, Seongbin;Koo, Jahyun
    • Journal of Semiconductor Engineering
    • /
    • 제1권1호
    • /
    • pp.46-56
    • /
    • 2020
  • This article highlights new opportunities of inorganic semiconductor materials for bio-implantable electronics, as a subset of 'transient' technology defined by an ability to physically dissolve, chemically degrade, or disintegrate in a controlled manner. Concepts of foundational materials for this area of technology with historical background start with the dissolution chemistry and reaction kinetics associated with hydrolysis of nanoscale silicon surface as a function of temperature and pH level. The following section covers biocompatibility of silicon, including related other semiconductor materials. Recent transient demonstrations of components and device levels for bioresorbable implantation enable the future direction of the transient electronics, as temporary implanters and other medical devices that provide important diagnosis and precisely personalized therapies. A final section outlines recent bioresorbable applications for sensing various biophysical parameters, monitoring electrophysiological activities, and delivering therapeutic signals in a programmed manner.

Contribution of ERP/EEG Measurements for Monitoring of Neurological Disorders

  • Lamia Bouafif;Cherif Adnen
    • International Journal of Computer Science & Network Security
    • /
    • 제24권6호
    • /
    • pp.59-66
    • /
    • 2024
  • Measurable electrophysiological changes in the scalp are frequently linked to brain activities. These progressions are called related evoked potentials (ERP), which are transient electrical responses recorded by electroencephalography (EEG) in light of tactile, mental, or motor enhancements. This painless strategy is gradually being used as a conclusion and clinical help. In this article, we will talk about the main ways to monitor brain activities in people with neurological diseases like Alzheimer's disease by analyzing EEG signals using ERP. We will also talk about how this method helps to detect the disease at an early stage.