• 제목/요약/키워드: Electrons

검색결과 1,486건 처리시간 0.026초

Conceptual understanding of ubiquitous superconductivity

  • Hwang, Jungseek
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제22권4호
    • /
    • pp.6-9
    • /
    • 2020
  • Since the discovery of superconductivity, the unique and mysterious phenomenon has been observed in various metallic material systems. Now days, the superconductivity becomes ubiquitous because almost every metallic material system shows the superconductivity when it is cooled down enough. This ubiquity of the superconductivity is associated with the fermionic nature and itinerancy of electrons in metallic materials. Because fermions are governed by the Pauli's exclusion principle the total energy of fermions is much larger than that of bosons. Therefore, fermionic itinerant electrons are fundamentally instable. Itinerant electrons are able to find "a way" to lead them to their lowest possible energy state through an available bosonization (or pairing) process and Bose-Einstein condensation. Therefore, the lowest possible energy state of itinerant electrons will be a superconducting state, which is "their ultimate destination". This may explain the reason why the superconductivity is ubiquitous.

CF4, CH4, Ar 혼합기체의 전자 평균에너지 (Electron Mean Energy in CF4, CH4, Ar mixtures)

  • 김상남
    • 전기학회논문지P
    • /
    • 제64권4호
    • /
    • pp.241-245
    • /
    • 2015
  • Energy Distribution Function in pure $CH_4$, $CF_4$ and mixtures of $CF_4$ and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The calculations of electron swarm parameters require the knowledge of several collision cross-sections of electron beam. Thus, published momentum transfer, ionization, vibration, attachment, electronic excitation, and dissociation cross-sections of electrons for $CH_4$, $CF_4$ and Ar, were used. The differences of the transport coefficients of electrons in $CH_4$, mixtures of $CH_4$ and Ar, have been explained by the deduced energy distribution functions for electrons and the complete collision cross-sections for electrons. The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4$-Ar mixtures shows the Maxwellian distribution for energy. That is, $f({\varepsilon})$ has the symmetrical shape whose axis of symmetry is a most probably energy.

A study of solitary wave trains generated by an injection of a blob into plasmas

  • 최정림;독고경환;최은진;민경욱;이은상
    • 천문학회보
    • /
    • 제37권1호
    • /
    • pp.93.1-93.1
    • /
    • 2012
  • In this study, we investigated the generation of consecutive electrostatic solitary waves (ESWs) using by one-dimensional electrostatic particle-in-cell (PIC) simulation. For a given Gaussian perturbation, it is found that electron two-stream instability occurs in local grids region. Thus because of this instability, the electrostatic potential grows rapidly so as to be separated into electron and ion in perturbation region, and then electrons are trapped with heating during growing instability. It is found that these heated and trapped electrons are caused the generation of ESW, and ions are reflected backward and forward at the boundary of the initial perturbation, then form cold ion beam whereas electrons are confined to inside of the potential. Furthermore backward reflected ion beam forms ion holes by ion two-stream instability. On the other hand, as the confined electrons are released, and then released electrons also form hot electron beam, which play an important role in the generation of consecutive ESWs such as broadband electrostatic noise (BEN) observed frequently in space environment. Therefore the reason of the generation of consecutive ESWs is the existence of heated electrons which can sufficiently support energy to produce ESWs.

  • PDF

$CF_4-Ar$ 혼합기체의 전자수송계수에 관한 연구 (Study on the Electron Transport Coefficient in Mixtures of $CF_4$ and Ar)

  • 김상남
    • 전기학회논문지P
    • /
    • 제56권1호
    • /
    • pp.1-5
    • /
    • 2007
  • Study on the electron transport coefficient in mixtures of CF4 and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The calculations of electron swarm parameters require the knowledge of several collision cross-sections of electron beam. Thus, published momentum transfer, ionization, vibration, attachment, electronic excitation, and dissociation cross-sections of electrons for $CF_4$ and Ar, were used. The differences of the transport coefficients of electrons in $CF_4$ mixtures of Ar, have been explained by the deduced energy distribution functions for electrons and the complete collision cross-sections for electrons. The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4-Ar$ mixtures shows the Maxwellian distribution for energy. That is, $f({\varepsilon})$ has the symmetrical shape whose axis of symmetry is a most probably energy. The proposed theoretical simulation techniques in this work will be useful to predict the fundamental process of charged particles and the breakdown properties of gas mixtures. A two-term approximation of the Boltzmann equation analysis and Monte Carlo simulation have been used to study electron transport coefficients.

RE-ACCELERATION OF FOSSIL ELECTRONS BY SHOCKS ENCOUNTERING HOT BUBBLES IN THE OUTSKIRTS OF GALAXY CLUSTERS

  • Kang, Hyesung
    • 천문학회지
    • /
    • 제51권6호
    • /
    • pp.185-195
    • /
    • 2018
  • Galaxy clusters are known to host many active galaxies (AGNs) with radio jets, which could expand to form radio bubbles with relativistic electrons in the intracluster medium (ICM). It has been suggested that fossil relativistic electrons contained in remnant bubbles from extinct radio galaxies can be re-accelerated to radio-emitting energies by merger-driven shocks via diffusive shock acceleration (DSA), leading to the birth of radio relics detected in clusters. In this study we assume that such bubble consist primarily of thermal gas entrained from the surrounding medium and dynamically-insignificant amounts of relativistic electrons. We also consider several realistic models for magnetic fields in the cluster outskirts, including the ICM field that scales with the gas density as $B_{ICM}{\infty}n^{0.5}_{ICM}$. Then we perform time-dependent DSA simulations of a spherical shock that runs into a lower-density but higher-temperature bubble with the ratio $n_b/n_{ICM}{\approx}T_{ICM}/T_b{\approx}0.5$. We find that inside the bubble the shock speed increases by about 20 %, but the Mach number decreases by about 15% in the case under consideration. In this re-acceleration model, the observed properties of a radio relic such as radio flux, spectral index, and integrated spectrum would be governed mainly by the presence of seed relativistic electrons and the magnetic field profile as well as shock dynamics. Thus it is crucial to understand how fossil electrons are deposited by AGNs in the ICM and how the downstream magnetic field evolves behind the shock in detailed modeling of radio relics.

Electron Pre-acceleration in Weak Quasi-perpendicular Shocks in Clusters of Galaxies

  • Ha, Ji-Hoon;Kang, Hyesung;Ryu, Dongsu
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.49.1-49.1
    • /
    • 2019
  • Giant radio relics in the outskirts of galaxy clusters have been observed and they are interpreted as synchrotron emission from relativistic electrons accelerated via diffusive shock acceleration (DSA) in weak shocks of Ms < 3.0. In the DSA theory, the particle momentum should be greater than a few times the momentum of thermal protons to cross the shock transition and participate in the Fermi acceleration process. In the equilibrium, the momentum of thermal electrons is much smaller than the momentum of thermal protons, so electrons need to be pre-accelerated before they can go through DSA. To investigate such electron injection process, we study the electron pre-acceleration in weak quasi-perpendicular shocks (Ms = 2.0 - 3.0) in an ICM plasma (kT = 8.6 keV, beta = 100) through 2D particle-in-cell simulations. It is known that in quasi-perpendicular shocks, a substantial fraction of electrons could be reflected upstream, gain energy via shock drift acceleration (SDA), and generate oblique waves via the electron firehose instability (EFI), leading the energization of electrons through wave-particle interactions. We find that such kinetic processes are effective only in supercritical shocks above a critical Mach number, $Ms{\ast}{\sim}2.3$. In addition, even in shocks with Ms > 2.3, energized electrons may not reach high energies to be injected to DSA, because the oblique EFI alone fails to generate long-wavelength waves. Our results should have implications for the origin and nature of radio relics.

  • PDF

물질을 투과한 고에너지 전자선의 선량변화 (Studies on the Interaction of High Energy Electron with Various Matters)

  • 추성실;김귀언;박창윤
    • Radiation Oncology Journal
    • /
    • 제1권1호
    • /
    • pp.11-19
    • /
    • 1983
  • Interaction between high energyelectrons and matters had many complex reactions and the high energy electrons lost their energies with collision and scattering, therefore, electrons distribution in matters was shown as various situation by scattering, exciting and ionizing with moleculars. We experimentally studies with 13 MeV Linear Accelerator and thermoluminescence dosimeter using aluminium and Teflon, etc., and measured energy loss of electrons, electron range, electron scattering and dose distribution in matter. We compared the results with theoretical formular, between 4-qw MeV, the energy loss of electrons was decreased by 2 MeV per $1g/cm^2$ but under 1MeV it was rapidly decreased. Electron range in matter reached to $0.5/cm^2$ per 1MeV of incident energy at 6-12MeV. The dose distribution in matter was increased slightly to some depth by total distribution i.e., the combined intensity of primary and secondary radiant and it was rapidly decreased near the maximum range of electrons. Energy loss of electrons and electron range measured by experiment were coincided with theoretical equations of L. Landau and Feather under 5 and 3% errors respectively. The dose distribution of electrons in matter was similar to L.V. Spencer formular, however, we had found that it was quite different in accordance with the field size and that new formular of dose distribution was induced as empirical function contained experimental factors according to field size.

  • PDF

A Correlation Study for Substorm Injection Electrons in Relativistic Electron Events

  • Hwang, Jung-A;Kyoung W. Min;Lee, Dae-Young;Lee, Ensang
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2003년도 한국우주과학회보 제12권2호
    • /
    • pp.36-36
    • /
    • 2003
  • While it is presumed that substorm injection electrons of a few hundred keV are the seeds for relativistic electrons frequently observed during the recovery phase of storms, correlation between the two events has not been well explored with the observed satellite data. We would like to address this problem in the present paper using the data from the geosynchronous GOES and LANL satellites as well as from the polar orbiting NOAA satellites. Our statistical study shows the two channels of LANL SOPA instrument, 105 150 keV and 150 225 keV, best correlates with the increase of the flux levels of GOES relativistic electrons. Especially, the relativistic electron events are not observed when the flux levels of these two channels are maintained low in the substorm injections, regardless of the level of the ULF activities. The conclusion does not change whether the substorm injections occur . during the storm recovery phase or during the non-storm time. As the ULF waves are observed quite frequently over the entire range of L=4 to L=7, the reason why REEs are seen mostly during the storm time seems to be related to the fact that storm-time substorms produce more seed electrons than the substorms that occur during the non-storm time.

  • PDF

Can relativistic electrons be accelerated in the geomagnetic tail region?

  • Lee, J.J.;Parks, G.K.;Min, K.W.;Lee, E.S.;McCarthy, M.P.;Hwang, J.A.;Lee, C.N.
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2008년도 한국우주과학회보 제17권2호
    • /
    • pp.31.1-31.1
    • /
    • 2008
  • While some observations in the geomagnetic tail region supported electrons could be accelerated by reconnection processes, we still need more observation data to confirm electron acceleration in this region. Because most acceleration processes accompany strong pitch angle diffusion, if the electrons were accelerated in this region, strong energetic electron precipitation should be observed near earth on aurora oval. Even though there are several low altitude satellites observing electron precipitation, intense and small scale precipitation events have not been identified successfully. In this presentation, we will show an observation of strong energetic electron precipitation that might be analyzed by relativistic electron acceleration in the confined region. This event was observed by low altitude Korean STSAT-1, where intense several hundred keV electron precipitation was seen simultaneously with 10 keV electrons during storm time. In addition, we observed large magnetic field fluctuations and an ionospheric plasma depletion with FUV aurora emissions. Our observation implies relativistic electrons can be generated in the small area where Fermi acceleration might work.

  • PDF

Space Weather and Relativistic Electron Enhancement

  • Lee, J.J.;Parks, G.K.;McCarthy, M.P.;Min, K.W.;Lee, E.S.;Kim, H.J.;Park, J.H.;Hwang, J.A.
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2006년도 한국우주과학회보 제15권2호
    • /
    • pp.52-52
    • /
    • 2006
  • Many spacecraft failures and anomalies have been attributed to energetic electrons in the Earth's magnetosphere. While the dynamics of these electrons have been studied extensively for several decades, the fundamental question of how they are accelerated is not fully resolved. Proposed theories have not been successful in explaining fast high energy increase such as REE (Relativistic electron enhancement). In this presentation, we show observations of energetic electron precipitation measured by the Korean satellite, STSAT-1 which simultaneously detect (100ev - 20 keV) and (170 - 360 keV) energy electrons at the 680 km orbit, when the RES event observed at the geosynchronous orbit on October 13, 2004. STSAT-1 observed intense electron precipitation in both energy ranges occurred in the midnight sector clearly demonstrating that electrons having wide energy band are injected from the plasma sheet. To make the balance between loss and injection, the injected electron flux should be also large. In this situation, the injected electrons can be trapped into the magnetosphere and produce REE, though they have low e-folding energies. We propose this plasma sheet injection might be the primary source of relativistic electron (1 MeV) flux increases.

  • PDF