DOI QR코드

DOI QR Code

Conceptual understanding of ubiquitous superconductivity

  • Received : 2020.11.15
  • Accepted : 2020.12.12
  • Published : 2020.12.31

Abstract

Since the discovery of superconductivity, the unique and mysterious phenomenon has been observed in various metallic material systems. Now days, the superconductivity becomes ubiquitous because almost every metallic material system shows the superconductivity when it is cooled down enough. This ubiquity of the superconductivity is associated with the fermionic nature and itinerancy of electrons in metallic materials. Because fermions are governed by the Pauli's exclusion principle the total energy of fermions is much larger than that of bosons. Therefore, fermionic itinerant electrons are fundamentally instable. Itinerant electrons are able to find "a way" to lead them to their lowest possible energy state through an available bosonization (or pairing) process and Bose-Einstein condensation. Therefore, the lowest possible energy state of itinerant electrons will be a superconducting state, which is "their ultimate destination". This may explain the reason why the superconductivity is ubiquitous.

Keywords

References

  1. H. K. Onnes, "The resistance of pure mercury at helium temperatures," Commun. Phys. Lab. Univ. Leiden, vol. 12, pp. 120, 1911.
  2. W. Meissner and R. Ochsenfeld, "Ein neuer Effekt bei Eintritt der Supraleitfahigkeit," Naturwissenschaften, vol. 21, pp. 787-788, 1933. https://doi.org/10.1007/BF01504251
  3. M. Tinkham, Introduction to Superconductivity, second edition, McGraw-Hill Book Co., New York, 2004.
  4. Superconductivity - Wikipedia (https://en.wikipedia.org/wiki/Superconductivity), 2020 and references therein.
  5. A. J. Leggett, "The Ubiquity of Superconductivity," Annu. Rev. Condens. Matter Phys., pp. 11-30, 2011 and reference therein.
  6. A. Einstein, "Quantentheorie des einatomigen idealen Gases," Konigliche Preussische Akademie der Wissenschaften. Sitzungsberichte, pp. 261-267, 1924.
  7. W. Pauli, "Uber den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren," Zeitschrift fur Physik, vol. 31, pp. 765-783, 1925. https://doi.org/10.1007/BF02980631
  8. E. Fermi, "Sulla quantizzazione del gas perfetto monoatomico," Rendiconti Lincei (in Italian), vol. 3, pp. 145-149, 1926
  9. P. A. M. Dirac, "On the Theory of Quantum Mechanics," Proceedings of the Royal Society A, vol. 112, pp. 661-677, 1926.
  10. S. N. Bose, "Plancks Gesetz und Lichtquantenhypothese," Zeitschrift fur Physik (in German), vol. 26, pp. 178-181, 1924 https://doi.org/10.1007/BF01327326
  11. F. London, "The λ-Phenomenon of liquid Helium and the Bose-Einstein degeneracy," Nature, vol. 141, pp. 643-644, 1938. https://doi.org/10.1038/141643a0
  12. N. W. Ashcroft and N. D. Mermin, Solid State Physics (1st ed.) by Holt, Reinhart, and Winston, pp. 299-302, 1976.
  13. G. D. Mahan, Many-Particle Physics, Kluwer Academic, 1981.
  14. W. Meissner and R. Ochsenfeld, "Ein neuer Effekt bei Eintritt der Supraleitfahigkeit," Naturwissenschaften, vol. 21, pp. 787-788, 1933 https://doi.org/10.1007/BF01504251
  15. C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, pp. 273-278, 2004.
  16. D. J. Scalapino, "The Cuprate Pairing Mechanism," Science, vol. 284, pp. 1282, 1999. https://doi.org/10.1126/science.284.5418.1282
  17. P. W. Anderson, "Is there glue in cuprate superconductors?," Science, vol. 316, pp. 1705, 2007. https://doi.org/10.1126/science.1140970
  18. A. Lanzara, P. V. Bogdanov, X. J. Zhou, S. A. Kellar, D. L. Feng, E. D. Lu, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio, J.-I. Shimoyama, T. Noda, S. Uchida, Z. Hussain, and Z.-X. Shen, "Evidence for ubiquitous strong electron-phonon coupling in high-temperature superconductors," Nature, vol. 412, pp. 510-514, 2001. https://doi.org/10.1038/35087518
  19. J. Hwang, G. D. Gu, and T. Timusk, "High-transition-temperature superconductivity in the absence of the magnetic-resonance mode," Nature, vol. 427, pp. 714-717, 2004. https://doi.org/10.1038/nature02347
  20. T. Dahm, V. Hinkov, S. V. Borisenko, A. A. Kordyuk, V. B. Zabolotnyy, J. Fink, B. Büchner, D. J. Scalapino, W. Hanke, and B. Keimer, "Strength of the spin-fluctuation-mediated pairing interaction in a high-temperature superconductor," Nat. Phys., vol. 5, pp. 217-221, 2009. https://doi.org/10.1038/nphys1180
  21. John Bardeen, Leon Cooper, and J. R. Schrieffer, "Theory of Superconductivity," Physical Review, vol. 108, pp. 1175, 1957. https://doi.org/10.1103/PhysRev.108.1175
  22. Jules de Launay, "The Isotope Effect in Superconductivity," Phys. Rev., vol. 93, pp. 661, 1954 and references therein. https://doi.org/10.1103/PhysRev.93.661
  23. J. P. Carbotte, "Properties of boson-exchange superconductors," Rev. Mod. Phys., vol. 62, pp. 1027, 1999 https://doi.org/10.1103/RevModPhys.62.1027
  24. W. L. McMillan, "Transition Temperature of Strong-Coupled Superconductors," Phys. Rev., vol. 167, pp. 331, 1968. https://doi.org/10.1103/PhysRev.167.331
  25. I. I. Mazin, "Superconductivity gets an iron boost," Nature, vol. 464, pp. 183-186, 2010. https://doi.org/10.1038/nature08914
  26. D. N. Basov and A. V. Chubukov, "Manifesto for a higher Tc," Nat. Phys., vol. 7, pp. 272-276, 2011. https://doi.org/10.1038/nphys1975
  27. A. J. Millis, H. Monien, and D. Pines, "Phenomenological model of nuclear relaxation in the normal state of YBa2Cu3O7," Phys. Rev. B, vol. 42, pp. 167, 1990. https://doi.org/10.1103/PhysRevB.42.167
  28. Jules P Carbotte, Thomas Timusk, and Jungseek Hwang, "Bosons in high-temperature superconductors: an experimental survey," Rep. Prog. Phys., vol. 74, pp. 066501, 2011 and reference therein. https://doi.org/10.1088/0034-4885/74/6/066501
  29. J. Hwang, E. Schachinger, J. P. Carbotte, F. Gao, D. B. Tanner, and T. Timusk, "Bosonic Spectral Density of Epitaxial Thin-Film La1.83Sr0.17CuO4 Superconductors from Infrared Conductivity Measurements," Phys. Rev. Lett., vol. 100, pp. 137005, 2008. https://doi.org/10.1103/PhysRevLett.100.137005
  30. Saurabh Maiti and Andrey V. Chubukov, "Superconductivity from repulsive interaction," AIP Conference Proceedings, vol. 1550, pp. 3, 2013.