• Title/Summary/Keyword: Electronics Units

Search Result 479, Processing Time 0.033 seconds

Implememtation of Fast Rasterizer processing using GPGPU based on SIMT structure (SIMT 구조 기반 GPGPU를 이용한 고속 Rasterizer 구현)

  • Kim, Chiyong
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.276-279
    • /
    • 2017
  • In this paper, SIMT structure based GPGPU (General Purpose Computing on Graphics Processing Units) is used for accelerating the Rasterizer which constitutes the screen of the display device in pixel unit. The GPU has a large number of ALUs, and the processing is very fast because of parallel processing. Therefore, in this paper, we implemented a rasterizer that generates a 3D graphics model using a CPU that performs operations sequentially and a GPU that performs operations in parallel. We confirmed that proposed rasterizer in this paper is 1.45 times better than rasterizer using Intel CPU when generating one frame.

A 32-bit Microprocessor with enhanced digital signal process functionality (디지털 신호처리 기능을 강화한 32비트 마이크로프로세서)

  • Moon, Sang-ook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.820-822
    • /
    • 2005
  • We have designed a 32-bit microprocessor with fixed point digital signal processing functionality. This processor, combines both general-purpose microprocessor and digital signal processor functionality using the reduced instruction set computer design principles. It has functional units for arithmetic operation, digital signal processing and memory access. They operate in parallel in order to remove stall cycles after DSP or load/store instructions, which usually need one or more issue latency cycles in addition to the first issue cycle. High performance was achieved with these parallel functional units while adopting a sophisticated five-stage pipeline stucture.

  • PDF

Preliminary Design of Power Control and Distribution Unit for LEO Application (저궤도 위성 응용을 위한 전력조절분배기 설계)

  • Park, Sung-Woo;Park, Hee-Sung;Jang, Jin-Baek;Jang, Sung-Soo;Lee, Sang-Kon
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.55-57
    • /
    • 2007
  • A Power control and Distribution Unit (PCDU) plays roles of protection of battery against overcharge by active control of solar array generated power, distribution of unregulated electrical power via controlled outlets to bus and instrument units, distribution of regulated electrical power to selected bus and instrument units, and provision of status monitoring and telecommand interface allowing the system and ground operate the power system, evaluate its performance and initiate appropriate countermeasures in case of abnormal conditions. In this work, we perform the preliminary design of a PCDU for the small Low Earth Orbit (LEO) Satellite applications. The main constitutes of the PCDU are the battery interface module, solar array regulators with maximum power point tracking (MPPT) technology, heater power distribution modules, internal converter modules for regulated bus voltage generation, power distribution modules of unregulated and regulated primary bus, and instrument power distribution modules.

  • PDF

3D Spreader Position Information by the CCD Cameras and the Laser Distance Measuring Unit for ATC

  • Bae, Dong-Suk;Lee, Jung-Jae;Lee, Bong-Ki;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1679-1684
    • /
    • 2004
  • This paper introduces a novel approach that can provide the three dimensional information on the movement of a spreader by using two CCD cameras and a laser distance sensor, which enables an ALS (Automatic Landing System) to be used for yard cranes at a harbor. So far a kind of 2D Laser scanner sensor or laser distance measuring units are used as corner detectors for the geometrical matching between the spreader and a container, which provides only 2D information which is not enough for an accurate and fast ALS system required presently. In addition to this deficiency in performance, the price for the system is too high to be adopted widely for the ALS. Therefore, to overcome these defects, a novel method to acquire the three dimensional information for the movement of a spreader including skew and sway angles is proposed using two CCD cameras and a laser distance sensor. To show the efficiency of proposed algorithm, real experiments are performed to show the accuracy improvement in distance measurement by fusing the sensory information of CCD camera and laser distance sensor.

  • PDF

Segmentation of Words from the Lines of Unconstrained Handwritten Text using Neural Networks (신경회로망을 이용한 제약 없이 쓰여진 필기체 문자열로부터 단어 분리 방법)

  • Kim, Gyeong-Hwan
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.7
    • /
    • pp.27-35
    • /
    • 1999
  • Researches on the recognition of handwritten script have been conducted under the assumption that the isolated recognition units are provided as inputs. However, in practical recognition system designs, providing the isolated recognition unit is an challenge due to various writing syles. This paper proposes an approach for segmenting words from lines of unconstrained handwritten text, without help of recognition. In contrast to the conventional approaches which are based on physical gaps between connected components, clues that reflect the author's writing style, in terms of spacing, are extracted and utilized for the segmentation using a simple neural network. The clues are from character segments and include normalized heights and intervals of the segments. Effectiveness of the proposed approach compared with the conventional connected component based approaches in terms of word segmentation performance was evaluated by experiments.

  • PDF

A Broadband Microstrip Array Antenna for 3G Smart Antenna System Testbed

  • Rashid, Zainol Abidin Abdul;Islam, Mohammad Tariqul;Jiunn, Ng Kok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.5 no.1
    • /
    • pp.43-59
    • /
    • 2006
  • A compact and broadband $4\times1$ array antenna was developed for 3G smart antenna system testbed. The $4\times1$ uniform linear away antenna was designed to operate at 1.885 to 2.2GHz with a total bandwidth of 315MHz. The array elements were based on the novel broadband L-probe fed inverted hybrid E-H (LIEH) shaped microstrip patch, which offers 22% size reduction to the conventional rectangular microstrip patch antenna. For steering the antenna beam, a commercial variable attenuator (KAT1D04SA002), a variable phase shifter (KPH350SC00) with four units each, and the corporate 4-ways Wilkinson power divider which was fabricated in-house were integrated to form the beamforming feed network. The developed antenna has an impedance bandwidth of 17.32% $(VSWR\leq1.5)$, 21.78% $(VSWR\leq2)$ with respect to center frequency 2.02GHz and with an achievable gain of 11.9dBi. The design antenna offer a broadband, compact and mobile solution for a 3G smart antenna testbed to fully characterized the IMT-2000 radio specifications and system performances.

  • PDF

A Fully Synthesizable Bluetooth Baseband Module for a System-on-a-Chip

  • Chun, Ik-Jae;Kim, Bo-Gwan;Park, In-Cheol
    • ETRI Journal
    • /
    • v.25 no.5
    • /
    • pp.328-336
    • /
    • 2003
  • Bluetooth is a specification for short-range wireless communication using the 2.4 GHz ISM band. It emphasizes low complexity, low power, and low cost. This paper describes an area-efficient digital baseband module for wireless technology. For area-efficiency, we carefully consider hardware and software partitioning. We implement complex control tasks of the Bluetooth baseband layer protocols in software running on an embedded microcontroller. Hardware-efficient functions, such as low-level bitstream link control; host controller interfaces (HCIs), such as universal asynchronous receiver transmitter (UART) and universal serial bus (USB)interfaces; and audio Codec are performed by dedicated hardware blocks. Furthermore, we eliminate FIFOs for data buffering between hardware functional units. The design is done using fully synthesizable Verilog HDL to enhance the portability between process technologies so that our module can be easily integrated as an intellectual property core no system-on-a-chip (SoC) ASICs. A field programmable gate array (FPGA) prototype of this module was tested for functional verification and realtime operation of file and bitstream transfers between PCs. The module was fabricated in a $0.25-{\mu}m$ CMOS technology, the core size of which was only 2.79 $mm{\times}2.80mm$.

  • PDF

Design of Defect Diagnosis Platform based on CAN Network for Reliability Improvement of Vehicle SoC (차량용 SoC의 신뢰성 향상을 위한 CAN 통신 기반의 고장진단 플랫폼 설계)

  • Hwang, Doyeon;Kim, Dooyoung;Park, Sungju
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.47-55
    • /
    • 2015
  • To verify the function of vehicle is becoming more and more difficult because many electronic control units have been embedded in vehicle with development of electronics industry. The reliability of vehicle should be considered above all important because malfunction of vehicle can cause damage of human life. In this paper, defect diagnosis platform based on CAN network is proposed to improve the reliability of vehicle. Reliability of vehicle is significantly increased by adopting the structural test via dedicated test path after manufacturing. Besides, the test cost is reduced because additional test pins are not required.

Converting Interfaces on Application-specific Network-on-chip

  • Han, Kyuseung;Lee, Jae-Jin;Lee, Woojoo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.4
    • /
    • pp.505-513
    • /
    • 2017
  • As mobile systems are performing various functionality in the IoT (Internet of Things) era, network-on-chip (NoC) plays a pivotal role to support communication between the tens and in the future potentially hundreds of interacting modules in system-on-chips (SoCs). Owing to intensive research efforts more than a decade, NoCs are now widely adopted in various SoC designs. Especially, studies on application-specific NoCs (ASNoCs) that consider the heterogeneous nature of modern SoCs contribute a significant share to use of NoCs in actual SoCs, i.e., ASNoC connects non-uniform processing units, memory, and other intellectual properties (IPs) using flexible router positions and communication paths. Although it is not difficult to find the prior works on ASNoC synthesis and optimization, little research has addressed the issues how to convert different protocols and data widths to make a NoC compatible with various IPs. Thus, in this paper, we address important issues on ASNoC implementation to support and convert multiple interfaces. Based on the in-depth discussions, we finally introduce our FPGA-proven full-custom ASNoC.

A Broadband Microstrip Array Antenna for 3G Smart Antenna System Testbed

  • Rashid, Zainol Abidin Abdul;Islam, Mohammad Tariqul;Jiunn, Ng Kok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.7 no.1
    • /
    • pp.41-58
    • /
    • 2007
  • A compact and broadband $4{\times}1$ array antenna was developed for 3G smart antenna system testbed. The $4{\times}1$ uniform linear array antenna was designed to operate at 1.885 to 2.2GHz with a total bandwidth of 315MHz. The array elements were based on the novel broadband L-probe fed inverted hybrid E-H (LIEH) shaped microstrip patch, which offers 22% size reduction to the conventional rectangular microstrip patch antenna. For steering the antenna beam, a commercial variable attenuator (KAT1D04SA002), a variable phase shifter (KPH350SC00) with four units each, and the corporate 4-ways Wilkinson power divider which was fabricated in-house were integrated to form the beamforming feed network. The developed antenna has an impedance bandwidth of 17.32% ($VSWR{\leq}1.5$), 21.78% ($VSWR{\leq}2$) with respect to center frequency 2.02GHz and with an achievable gain of 11.9dBi. The design antenna offer a broadband, compact and mobile solution for a 3G smart antenna testbed to fully characterized the IMT-2000 radio specifications and system performances.

  • PDF