• Title/Summary/Keyword: Electronic transition

Search Result 978, Processing Time 0.033 seconds

Optical Gap Bowing and Phonon Modes of Amorphous Ge1-x-ySexAsy Thin Films

  • So, Hyeon-Seop;Park, Jun-U;Jeong, Dae-Ho;Lee, Ho-Seon;Sin, Hye-Yeong;Yun, Seok-Hyeon;An, Hyeong-U;Kim, Su-Dong;Lee, Su-Yeon;Jeong, Du-Seok;Jeong, Byeong-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.288.1-288.1
    • /
    • 2014
  • We investigated the optical properties of Ge1-xSex and Ge1-x-ySexAsy amorphous semiconductor films using spectroscopic ellipsometry and Raman spectroscopy. The dielectric functions and absorption coefficients of the amorphous films were determined from the measured ellipsometric angles. We obtained the optical gap energies and Urbach energies from the absorption coefficients, and found a strong bowing effect in the optical gap energy of Ge1-x-ySexAsy where the endpoint binaries were Ge0.50Se0.50 and Ge0.31As0.69. Based on the correlation between optical gap energies and Urbach energies, the large bowing parameter was attributed to the electronic disorder. We found the composition dependence of several phonon modes using Raman spectroscopy. For Ge1-x-ySexAsy, the D mode (232-267 cm-1) changed from As-As (or As3 pyramid), to As(Se1/2)3 pyramid, and finally to Se clusters, as the Se composition increased. Resonant Raman phenomenon was observed in Ge0.38Se0.62 at a laser excitation of 514 nm (2.41 eV). We verified that this laser energy corresponds to the transition energy of Ge0.38Se0.62 using the second derivative of the dielectric function of Ge0.38Se0.62.

  • PDF

A Study on the Photoconductive Cell Production of New Semiconductor Using MgGa$_2$Se$_4$Single Crystals (MgGa$_2$Se$_4$신반도체 단결정을 사용한 광전도도 소자 제작에 관한 연구)

  • 김형곤;김형윤;이광석;이기형
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.1
    • /
    • pp.58-67
    • /
    • 1992
  • Optical absorption and photoluminescences(PL) of MgGa2Se4 and MgGa2Se4 : Co2+ single crustals were guown by the Bridgman method have been investigated in the visible and near-in frared regions. The optical absorption spectrum showed three absorption peak at 760 nm(13158nm, -1, 1.63eV), 1640nm(6097cm-1, 0.75eV).and 2500nm(4000cm-1,0.49eV) which are assigned the electronic transitions between the ground state and excited states of Co2+ ions with Td sym-metry in MgGa2Se4 host lattice. In PL spectrum the visible emission bands as well as the infrared emission band in these single cuystals are obserned. The visible emission bands are explained due to the radiative transitions of electrons from quasi continusly distributed tarps below the bottom of the conduction band to acceptor levels above the top of the valence band in the proposed energy level scheme. At the same time, it is considered that the infrated emission bands are attributed to electron transitions from the deep levels to the acceptor levels. The mechanism of the optical transition os well explained in terms of the energy diagram of MgGa2Se4.

  • PDF

Electrochemical Property of CNT/Co3O4 Nanocomposite for Anode of Lithium Batteries (리튬 이차전지 음극용 CNT/Co3O4 나노복합체의 전기화학적 특성)

  • Yoon, Dae Ho;Park, Yong Joon
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.3
    • /
    • pp.187-192
    • /
    • 2014
  • In this article, we report the fabrication and characterization of $CNT/Co_3O_4$ nanocomposite for lithium ion batteries. We expected that the composition with CNT is effective method to compensate for the low electronic conductivity of $Co_3O_4$ and suppress the stress from phase transition of $Co_3O_4$ during cycling. $CNT/Co_3O_4$ nanocomposites were composed of nano-sized $Co_3O_4$ particles, which were homogeneously distributed on the surface of CNTs. The $CNT/Co_3O_4$ electrode presented higher capacity than commercial graphite, good rate capability and stable cyclic performance. This implies that the $CNT/Co_3O_4$ could be a promising anode material for lithium ion batteries.

Preparation and Properties Enhancement of Epoxy Resin Employing Poly(amic acid) (PAA) (Poly(amic acid) (PAA)를 함유한 에폭시 수지의 제조 및 물성 향상)

  • 이용택;배성호;박병천
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.254-262
    • /
    • 2001
  • Epoxy resin based upon the N,N'-diglycidylaniline which is widely used in optic, electronic and composite material. We modified this epoxy resin with poly(amic acid) (PAA) that is a precursor of polyimide. To improve the mechanical property we controlled PAA content and imidization ratio. PI-modified epoxy blends were prepared for the formation of IPN structure. The possible reaction in the epoxy resin/PAA blends were investigated by FT-IR and inherent viscosity techniques. Thermal properties are measured by TGA, DSC, and TMA. Mechanical properties are measured by UTM and impact test machine. Morphology is investigated by SEM. Thermal stability improved with increasing the content of PAA in blends. As the content of PAA increases in blend, the glass transition temperature and thermal expansion coefficient decreases. Increasing impact strengths in J/m in the range of 920∼2412 were observed in blends. The PAA segment may act as a toughening agent in the epoxy networks, thus contributing the impact strength improvement of the blends.

  • PDF

Synthesis and Characterization of New Transition Metal Complexes of Schiff-base Derived from 2-Aminopyrimidine and 2,4-Dihydroxybenzaldehyde and Its Applications in Corrosion Inhibition (2-Aminopyrimidine 및 2,4-Dihydoxybenzaldehyde 치환체인 Schiff-염기의 전이금속 착물에 대한 합성 및 특성 그리고 부식방지에의 응용)

  • Ouf, Abd El-Fatah M.;Ali, Mayada S.;Soliman, Mamdouh S.;El-Defrawy, Ahmed M.;Mostafa, Sahar I.
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.4
    • /
    • pp.402-410
    • /
    • 2010
  • New complexes cis-[$Mo_2O_5(Hapdhba)_2$], trans-[$UO_2(Hapdhba)_2$], [Pd(Hapdhba)Cl($H_2O$)], [Pd(bpy)(Hapdhba)]Cl, [Ag(bpy)(Hapdhba)], [$Ru(Hapdhba)_2(H_2O)_2$], [$Rh(Hapdhba)_2Cl(H_2O)$] and [Au(Hapdhba)$Cl_2$] are reported, where $H_2$apdhba is the Schiff-base derived from 2-aminopyrimidine and 2,4-dihydroxy benzaldehyde. The complexes were characterized by IR, electronic, $^1H$ NMR and mass spectra, conductivity, magnetic and thermal measurements. The inhibitive effect of $H_2$apdhba for the corrosion of copper in 0.5 M HCl was also determined by potentiodynamic polarization measurements.

Nucleophilic Substitution Reactions of Y-Substituted-Phenyl Benzoates with Potassium Ethoxide in Anhydrous Ethanol: Reaction Mechanism and Role of K+ Ion

  • Kim, Song-I;Cho, Hyo-Jin;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.177-181
    • /
    • 2014
  • Pseudo-first-order rate constants ($k_{obsd}$) have been measured spectrophotometrically for the reactions of Y-substituted-phenyl benzoates (5a-j) with potassium ethoxide (EtOK) in anhydrous ethanol at $25.0{\pm}0.1^{\circ}C$. The plots of $k_{obsd}$ vs. [EtOK] curve upward regardless of the electronic nature of the substituent Y in the leaving group. Dissection of $k_{obsd}$ into the second-order rate constants for the reactions with the dissociated $EtO^-$ and ion-paired EtOK (i.e., $k_{EtO^-}$ and $k_{EtOK}$, respectively) has revealed that the ion-paired EtOK is more reactive than the dissociated $EtO^-$. The Br${\phi}$nsted-type plots for the reactions with the dissociated $EtO^-$ and ion-paired EtOK exhibit highly scattered points with ${\beta}_{lg}$ = -$0.5{\pm}0.1$. The Hammett plots correlated with ${\sigma}^o$ constants result in excellent linear correlations, indicating that no negative charge develops on the O atom of the leaving Y-substituted-phenoxide ion in transition state. Thus, it has been concluded that the reactions with the dissociated $EtO^-$ and ion-paired EtOK proceed through a stepwise mechanism, in which departure of the leaving group occurs after the RDS, and that $K^+$ ion catalyzes the reactions by increasing the electrophilicity of the reaction center through a four-membered cyclic TS structure.

In-situ spectroscopic studies of SOFC cathode materials

  • Ju, Jong-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.70.1-70.1
    • /
    • 2012
  • In-situ X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy studies of SOFC cathode materials will be discussed in this presentation. The mixed conducting perovskites (ABO3) containing rare and alkaline earth metals on the A-site and a transition metal on the B-site are commonly used as cathodes for solid oxide fuel cells (SOFC). However, the details of the oxygen reduction reaction are still not clearly understood. The information about the type of adsorbed oxygen species and their concentration is important for a mechanistic understanding of the oxygen incorporation into these cathode materials. XPS has been widely used for the analysis of adsorbed species and surface structure. However, the conventional XPS experiments have the severe drawback to operate at room temperature and with the sample under ultrahigh vacuum (UHV) conditions, which is far from the relevant conditions of SOFC operation. The disadvantages of conventional XPS can be overcome to a large extent with a "high pressure" XPS setup installed at the BESSY II synchrotron. It allows sample depth profiling over 2 nm without sputtering by variation of the excitation energy, and most importantly measurements under a residual gas pressure in the mbar range. It is also well known that the catalytic activity for the oxygen reduction is very sensitive to their electrical conductivity and oxygen nonstoichiometry. Although the electrical conductivity of perovskite oxides has been intensively studied as a function of temperature or oxygen partial pressure (Po2), in-situ measurements of the conductivity of these materials in contact with the electrolyte as a SOFC configuration have little been reported. In order to measure the in-plane conductivity of an electrode film on the electrolyte, a substrate with high resistance is required for excluding the leakage current of the substrate. It is also hardly possible to measure the conductivity of cracked thin film by electrical methods. In this study, we report the electrical conductivity of perovskite $La_{0.6}Sr_{0.4}CoO_{3-{\delta}}$ (LSC) thin films on yttria-stabilized zirconia (YSZ) electrolyte quantitatively obtained by in-situ IR spectroscopy. This method enables a reliable measurement of the electronic conductivity of the electrodes as part of the SOFC configuration regardless of leakage current to the substrate and cracks in the film.

  • PDF

Improvement of solar cell efficiency using selective emitter (Selective emitter를 이용한 태양전지 효율 향상)

  • Hong, Kuen-Kee;Cho, Kyeong-Yeon;Seo, Jae-Keun;Oh, Dong-Joon;Shim, Ji-Myung;Lee, Hyun-Woo;Kim, Ji-Sun;Shin, Jeong-Eun;Kim, Ji-Su;Lee, Eun-Joo;Lee, Soo-Hong;Lee, Hae-Seok
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.56-59
    • /
    • 2011
  • The process conditions for high efficiency industrial crystalline Si solar cells with selective emitter were optimized. In the screen printed solar cells, the sheet resistance must be 50-60V/sq. because of metal contact resistance. But the low sheet resistance causes the increase of the recombination and blue response at the short wavelength. Therefore, the screen printed solar cells with homogeneous emitter have limitations of efficiency, and this means that the selective emitter must be used to improve cell efficiency. This work demonstrates the feasibility of a commercially available selective emitter process, based on screen printing and conventional diffusion process. Now, we improved cell efficiency from 18.29% to18.45% by transition of heavy emitter pattern and shallow emitter doping condition.

  • PDF

Synthesis and Characterization of Dense Ceramic Membranes for Methane Conversion - Part II

  • Santos, A.;Fontes, V.A.;Fontes, F.A.Oliveira;De Sousa, J.F.;De Souza, C.P.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1112-1113
    • /
    • 2006
  • The perovskite- type oxide $(ABO_3)$ containing transition metals on the B-site show mixed (electronic/ionic) conductivity. These mixed-conductivity oxides are promising materials for oxygen permeating membranes. The main objective of this research work is to synthesize and characterization ceramic powders of the Sr-Co-Fe-O system for methane conversion using membrane reactor. SCFO powders were synthesized from the route was based on the complex method of combination of acid EDTA and citrate and shown be available by control efficient of synthesis to performed $SrCo_{0.8}Fe_{0.2}O_{3-\delta$, moreover, it presented easy implementation, reproducibility and operation. Powder ceramic was characterized by XRD, microscopic optic, SEM and TG-DTA.

  • PDF

Characteristic Analysis of the Discrete Time Voltage Mode CMOS Chaos Generative Circuit (이산시간 전압모드 CMOS 혼돈 발생회로의 특성해석)

  • Song, Han-Jeong;Gwak, Gye-Dal
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.3
    • /
    • pp.55-62
    • /
    • 2000
  • This paper presents an analysis of the chaotic behavior in the discrete-time voltage mode chaotic generator fabricated using 0.8${\mu}{\textrm}{m}$ single poly CMOS technology. An approximated empirical equation is extracted from the measurement data of a nonlinear function block. Then the bifurcation diagram is simulated according to input variables and Lyapunov exponent λ which represent a dependence on an initial value is calculated. We show the interrelations among time waveforms, state transition, and power spectra for the state condition of chaotic circuit, such as equilibrium, periodic, and chaotic state. And results of experiments in the chaotic circuit with the $\pm$2.5V power supply and sampling clock frequency of 10KHz are shown and compared with the simulated results.

  • PDF