• Title/Summary/Keyword: Electronic transition

Search Result 979, Processing Time 0.031 seconds

Transition Metal Oxide Multi-Layer Color Glass for Building Integrated Photovoltaic System (BIPV 시스템을 위한 전이금속 산화물 다중층 컬러 유리 구현 기술 연구)

  • Ahn, Hyeon-Sik;Gasonoo, Akpeko;Jang, Eun-Jeong;Kim, Min-Hoi;Lee, Jae-Hyun;Choi, Yoonseuk
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1128-1133
    • /
    • 2019
  • This paper proposed colored front panel glass for Building Integrated Photovoltaic (BIPV) systems using multi-layered thin films composed of transition metal oxide (TMO) layers. Molybdenum oxide (MoO3) and tungsten oxide (WO3) provided complementary and suitable materials in making effective interference of reflected light from interfaces with significant difference in refractive indices. A simple, fast, and cheap fabrication method was achieved by depositing the multi-layer films in a single thermal evaporator. Magenta colored glass with optical transmittance of more than 90% was achieved with MoO3 (60nm)/WO3(100nm) multi-layered film. This technology could play in a critical role in commercial BIPV system applications.

Lithium Transition Metal Phosphate Cathodes for Advanced Lithium Batteries (리튬이온전지에서 새로운 양극재료를 위한 금속인산화물)

  • ;Yet Ming Chiang
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.26-26
    • /
    • 2003
  • Lithium storage electrodes for rechargeable batteries require mixed electronic-ionic conduction at the particle scale in order to deliver desired energy density and power density characteristics at the device level. Recently, lithium transition metal phosphates of olivine and Nasicon structure type have become of great interest as storage cathodes for rechargeable lithium batteries due to their high energy density, low raw materials cost, environmental friendliness, and safety. However, the transport properties of this family of compounds, and especially the electronic conductivity, have not generally been adequate for practical applications. Recent work in the model olivine LiFePO$_4$, showed that control of cation stoichiometry and aliovalent doping results in electronic conductivity exceeding 10$^{-2}$ S/cm, in contrast to ~10$^{-9}$ S/cm for high purity undoped LiFePO$_4$. The increase in conductivity combined with particle size refinement upon doping allows current rates of >6 A/g to be utilized while retaining a majority of the ion storage capacity. These properties are of much practical interest for high power applications such as hybrid electric vehicles. The defect mechanism controlling electronic conductivity, and understanding of the microscopic mechanism of lithiation and delithiation obtained from combined electrochemical and microanalytical techniques, will be discussed

  • PDF

Electronic and Magnetic Structures of Rare-earth Permanent Magnets (희토류 영구자석의 전자기적 구조)

  • 민병일;장영록
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.1
    • /
    • pp.6-11
    • /
    • 1991
  • In order to investigate electronic and magnetic properties of permanent magnets, we have performed self-consistent electronic structure calculations on compounds of rare-earth and transition metals, such as $SmCo_{5},\;NdB_{6},\;NdFe_{5},\;NdFe_{4}B$. Employing the local density LMTO(linearized muffin tin orbital) band method, we have obtained the ground state parameters, such as band structures, density of states, Stoner parameters, and magnetic moments. We have also investigated interactions between d,f-electrons of Nd, Sm rare-earths and d-electrons of Fe, Co transition metals, and the s,p electrons of boron and explored effects of such interactions on the bonding mechanism and the electronic and magnetic structures in these rare-earth compounds.

  • PDF

Characteristic Polynomial of 90 UCA and Synthesis of CA using Transition Rule Blocks (90 UCA의 특성다항식과 전이규칙 블록을 이용한 CA 합성법)

  • Choi, Un-Sook;Cho, Sung-Jin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.3
    • /
    • pp.593-600
    • /
    • 2018
  • Cellular automata (CA) have been applied to effective cryptographic system design. CA is superior in randomness to LFSR due to the fact that its state is updated simultaneously by local interaction. To apply these CAs to the cryptosystem, a study has been performed how to synthesize CA corresponding to given polynomials. In this paper, we analyze the recurrence relations of the characteristic polynomial of the 90 UCA and the characteristic polynomial of the 90/150 CA whose transition rule is <$00{\cdots}001$>. And we synthesize the 90/150 CA corresponding to the trinomials $x^{2^n}+x+1(n{\geq}2)$ satisfying f(x)=f(x+1) using the 90 UCA transition rule blocks and the special transition rule block. We also analyze the properties of the irreducible factors of trinomials $x^{2^n}+x+1$ and propose a 90/150 CA synthesis algorithm corresponding to $x^{2^n}+x^{2^m}+1(n{\geq}2,n-m{\geq}2)$.

A Low Power Algorithm using State Transition Ready Method (상태 전환 준비 방법을 이용한 저전력 알고리즘)

  • Youn, Choong-Mo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.9
    • /
    • pp.971-976
    • /
    • 2014
  • In this paper, we proposed a low power algorithm using state transition ready method. The proposed algorithm defined a sleep state, a idle state and a run state for the task. A state transition occurring at the time due to the delay time created in order to reduce the power consumption state in the middle of each inserted into the ready state. The ready state considering a power consumption and a delay time in state transition. A scheduling step of performing the steps in excess of the increasing problems have the delay time is long. The power consumption increased for the operation step increase. A state transition from a sleep state with the longest delay time in operating state occurs when the state is switched by the time delay caused by the increase in operating time reduces the overall power consumption reduced. Experiments [6] were compared with the results of the power consumption. The experimental results [6] is reduced power consumption than the efficiency of the algorithm has been demonstrated.

Transmission Line using Microstrip-Slotline Transition Technology and Its Application to Power Divider (마이크로스트립과 슬롯라인 천이기술을 이용한 전송선로 구현과 전력 분배기에 응용)

  • Kim, Young;Sim, Seok-Hyun;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.687-692
    • /
    • 2013
  • This paper presents a compact power divider using microstrip-slotline transition technology. By using the microstrip-slotline transition, the ${\lambda}/4$ transmission lines of the divider can be changed to two ${\lambda}/8$ transmission lines in the multilayer structure. In the microstrip-slotline transition, we have used via holes to make a short circuit at the microstrip line and embedded spiral configuration stubs to reduce the electrical length of an open circuit at the slotline end point. For validating the microstrip-slotline technique, we have simulated and implemented the power divider with embedded spiral and via hole configuration circuits at a frequency of 2 GHz. Good agreement between the simulation and the measurement results is obtained at the operating frequency.

Applications of metal-semiconductor phase transition in 2D layered transition metal dichalcogenides (2차원 층상구조 전이금속칼코젠의 반도체-도체 구조상전이 기반 응용 기술)

  • Cho, Suyeon;Kim, Sera;Seok, Jinbong;Yang, Heejun
    • Vacuum Magazine
    • /
    • v.3 no.1
    • /
    • pp.4-8
    • /
    • 2016
  • Motivated by two dimensional graphene, layered transition metal dichalcogenides (TMDs) have attracted scientific interests by their diverse electronic, optical and catalytic properties. In particular, group 6 TMDs such as $MoS_2$ and $MoTe_2$ have polymorphs (with metallic octahedral and semiconducting hexagonal phases) which are not present in graphene. Here, we introduce a new concept in 2D materials' studies, structural phase transition, with group 6 TMDs and its current research trend and applications for electric device and electrochemical catalyst.

Small signal stability analysis of power systems with non-continuous operating elements by using RCF method : Modeling of the state transition equation (불연속 동작특성을 갖는 전력계통의 RCF법을 사용한 미소신호 안정도 해석 : 상태천이 방정식으로의 모델링)

  • Kim Deok Young
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.342-344
    • /
    • 2004
  • In conventional small signal stability analysis, system is assumed to be invariant and the state space equations are used to calculate the eigenvalues of state matrix. However, when a system contains switching elements such as FACTS devices, it becomes non-continuous system. In this case, a mathematically rigorous approach to system small signal stability analysis is by means of eigenvalue analysis of the system periodic transition matrix based on discrete system analysis method. In this research, RCF(Resistive Companion Form) method is used to analyse small signal stability of a non-continuous system including switching elements'. Applying the RCF method to the differential and integral equations of power system, generator, controllers and FACTS devices including switching elements should be modeled in the form of state transition matrix. From this state transition matrix eigenvalues which are mapped to unit circle can be calculated.

  • PDF

A Novel Soft Switching PWM·PFC AC·DC Boost Converter

  • Sahin, Yakup
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.256-262
    • /
    • 2018
  • This study introduces a novel Soft Switching (SS) Pulse Width Modulated (PWM) AC-DC boost converter. In the proposed converter, the main switch is turned on with Zero Voltage Transition (ZVT) and turned off with Zero Current Transition (ZCT). The main diode is turned on with Zero Voltage Switching (ZVS) and turned off with Zero Current Switching (ZCS). The auxiliary switch is turned on and off with ZCS. All auxiliary semiconductor devices are turned on and off with SS. There is no extra current or voltage stress on the main semiconductor devices. The majority of switching energies are transferred to the output by auxiliary transformer. Thus, the current stress of auxiliary switch is significantly reduced. Besides, the proposed converter has simple structure and ease of control due to common ground. The theoretical analysis of the proposed converter is verified by a prototype with 100 kHz switching frequency and 500 W output power. Furthermore, the efficiency of the proposed converter is 98.9% at nominal output power.