• Title/Summary/Keyword: Electronic printing

Search Result 482, Processing Time 0.022 seconds

High Performance Flexible Inorganic Electronic Systems

  • Park, Gwi-Il;Lee, Geon-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.115-116
    • /
    • 2012
  • The demand for flexible electronic systems such as wearable computers, E-paper, and flexible displays has increased due to their advantages of excellent portability, conformal contact with curved surfaces, light weight, and human friendly interfaces over present rigid electronic systems. This seminar introduces three recent progresses that can extend the application of high performance flexible inorganic electronics. The first part of this seminar will introduce a RRAM with a one transistor-one memristor (1T-1M) arrays on flexible substrates. Flexible memory is an essential part of electronics for data processing, storage, and radio frequency (RF) communication and thus a key element to realize such flexible electronic systems. Although several emerging memory technologies, including resistive switching memory, have been proposed, the cell-to-cell interference issue has to be overcome for flexible and high performance nonvolatile memory applications. The cell-to-cell interference between neighbouring memory cells occurs due to leakage current paths through adjacent low resistance state cells and induces not only unnecessary power consumption but also a misreading problem, a fatal obstacle in memory operation. To fabricate a fully functional flexible memory and prevent these unwanted effects, we integrated high performance flexible single crystal silicon transistors with an amorphous titanium oxide (a-TiO2) based memristor to control the logic state of memory. The $8{\times}8$ NOR type 1T-1M RRAM demonstrated the first random access memory operation on flexible substrates by controlling each memory unit cell independently. The second part of the seminar will discuss the flexible GaN LED on LCP substrates for implantable biosensor. Inorganic III-V light emitting diodes (LEDs) have superior characteristics, such as long-term stability, high efficiency, and strong brightness compared to conventional incandescent lamps and OLED. However, due to the brittle property of bulk inorganic semiconductor materials, III-V LED limits its applications in the field of high performance flexible electronics. This seminar introduces the first flexible and implantable GaN LED on plastic substrates that is transferred from bulk GaN on Si substrates. The superb properties of the flexible GaN thin film in terms of its wide band gap and high efficiency enable the dramatic extension of not only consumer electronic applications but also the biosensing scale. The flexible white LEDs are demonstrated for the feasibility of using a white light source for future flexible BLU devices. Finally a water-resist and a biocompatible PTFE-coated flexible LED biosensor can detect PSA at a detection limit of 1 ng/mL. These results show that the nitride-based flexible LED can be used as the future flexible display technology and a type of implantable LED biosensor for a therapy tool. The final part of this seminar will introduce a highly efficient and printable BaTiO3 thin film nanogenerator on plastic substrates. Energy harvesting technologies converting external biomechanical energy sources (such as heart beat, blood flow, muscle stretching and animal movements) into electrical energy is recently a highly demanding issue in the materials science community. Herein, we describe procedure suitable for generating and printing a lead-free microstructured BaTiO3 thin film nanogenerator on plastic substrates to overcome limitations appeared in conventional flexible ferroelectric devices. Flexible BaTiO3 thin film nanogenerator was fabricated and the piezoelectric properties and mechanically stability of ferroelectric devices were characterized. From the results, we demonstrate the highly efficient and stable performance of BaTiO3 thin film nanogenerator.

  • PDF

Characteristics of SnO2 Thick Film Gas Sensors Doped with Catalyst (촉매가 첨가된 SnO2 후막형 가스센서의 특성 연구)

  • Lee, Don-Kyu;Yu, Yoon-Sick;Lee, Ji-Young;Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.622-626
    • /
    • 2010
  • Cu doped $SnO_2$ thick films for gas sensors were fabricated by screen printing method on alumina substrates and annealed at $500^{\circ}C$ in air, respectively. Structural properties of $SnO_2$ by X-ray diffraction showed (110), (101) and (211) dominant tetragonal phase. The effects of catalyst Cu in $SnO_2$-based gas sensors were investigated. Sensitivity of $SnO_2$:Cu sensors to 2,000 ppm $CO_2$ gas and 50 ppm $H_2S$ gas was investigated for various Cu concentration. The highest sensitivity to $CO_2$ gas and $H_2S$ gas of Cu doped $SnO_2$ gas sensors was observed at the 8 wt% and 12 wt% Cu concentration, respectively. The improved sensitivity in the Cu doped $SnO_2$ gas sensors was explained by decrease of electron depletion region in Cu and $SnO_2$ junction, and increase of reactive oxygen and surface area in the $SnO_2$.

Improvement of Inverted Hybrid Organic Light-emitting Diodes Properties with Bar-coating Process (바코팅 공정을 이용한 유기 발광 다이오드 특성 향상)

  • Kwak, Sun-Woo;Yu, Jong-Su;Han, Hyun-Suk;Kim, Jung-Su;Lee, Taik-Min;Kim, Inyoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.589-595
    • /
    • 2013
  • Solution processed conjugated molecules enable to manufacture various electronic devices by unconventional and cost effective patterning methods as screen or gravure printing. Spin-coating is the most popularly used method to form conjugated polymeric film for various electronic devices. The coating method has certain disadvantages such as a large amount of unwanted wastes, difficulty forming a film with a large area, and impossible to apply roll-to-roll manufacturing. We present here a promising alternative coating method, bar-coating for conjugated polymer film and OLED with the bar coated light emitting layer. In this papers, we show atomic force microscope images of spin- and bar-coated Poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,8-diyl)] (F8BT) films on substrate. The bar-coated film showed a slight lower RMS roughness (1.058 [nm]) than spin-coated film (1.767 [nm]). It means the bar-coating is suitable method to form light emitting layers in OLEDs. By using bar-coating process, an OLED obtained with 4.7 [cd/A] in maximum current efficiency.

An Effective Method of Product Number Detection from Thick Plates (효과적인 후판의 제품번호 검출 방법)

  • Park, Sang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.1
    • /
    • pp.139-148
    • /
    • 2015
  • In this paper, a new algorithm is proposed for detecting the product number of each thick plate and extracting each character of the product number from a image which contains several thick plates. In general, a image of thick plates contains several steal plates. To obtain the product number from the image, we first need to separate each plate. To do so, we use the line edges of thick plates and a clustering algorithm. After separating each plate, background parts are eliminated from the image of each plate. Background parts of an individual thick plate image consist of the dark part of steel and the white part of paint which is used for printing the product number. We propose a two-tiered method where dark background parts are first eliminated and then white parts are eliminated. Finally, each character is extracted from the product number image using the characteristics of product number. The results of the experiments on the various steal plates images emphasize that the proposed algorithm detects each thick plate and extracts the product number from a image effectively.

CO sensing Properties of $SnO_{2}$ fine particles ($SnO_{2}$ 초미세 입자의 CO 감지 특성)

  • Park, Jin-Seoung;Park, Bo-Seok;Noh, Whyo-Sub
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.55-61
    • /
    • 2002
  • Ultra-fine particles of $SnO_{2}$ was synthersized by the sol-gel powder processing using tin(II) chloride dihydrate$(SnCl_{2}{\cdot}2H_{2}O)$ and ethanol$(C_{2}H_{5}OH)$ as raw materials. Gel powders can be obtained by drying of sol at $120^{\circ}C$ after aging 72hrs and 168hrs. The amount of $SnO_{2}$ phase was increased with temperature because of the evaporation of volatile components, and the creation of $SnO_{2}$ phase was almost done by the heat treatment at $700^{\circ}C/30min$ The grain sizes after firing are about 20-30nm, and it showed the narrow distribution of grain size. The specimens to measure electrical properties were fabricated by the thick film screen printing technique on the alumina substrates. The conductance of $SnO_{2}$ was increased with temperature up to $380^{\circ}C$ by the typical conduction mechanism of semiconducting ceramics. There was a region of constant conductance between about $200^{\circ}C$ and $380^{\circ}C$ due to the increment of electron concentration with temperature and the annihilation of conduction carriers by the absorption and electron trapped-ionization of oxygen on the surface of $SnO_{2}$, It was finally showed the intrinsic behaviors above $450^{\circ}C$. The sensing properties of response time, recovery, and sensitivity of CO were improved with aging time.

  • PDF

A Hybrid Reader Antenna for Near- and Far-Field RFID in UHF Band (근거리장 및 원거리장용 하이브리드 RFID 리더 안테나)

  • Lee, Chu-Yong;Han, Wone-Keun;Park, Ik-Mo;Choo, Ho-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.174-182
    • /
    • 2009
  • In this paper, we propose a novel hybrid reader antenna using a triangular and rectangular sub-patch for near- and far-field RFID reader in UHF band. The antenna operates at 912 MHz, and the low-cost mass-production is available, since the antenna can be built by printing on a FR-4 substrate. The triangular patch is designed to produce a circularly polarized radiation along the bore-sight direction and the rectangular sub-patch is designed to generate a strong magnetic field over the antenna aperture. The measurement shows Hz field greater than -25 dBA/m(3 cm above the antenna aperture), and exhibits circularly polarized radiation(AR<3 dB) with a radiation gain of 6 dBi.

Implementation of User Interface for DNA Micro Array Printing Technology (DNA 마이크로어레이 프린팅을 위한 사용자 인터페이스 적용기술)

  • Park, Jae-Sam
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.12
    • /
    • pp.1875-1882
    • /
    • 2013
  • Micro-array technology contributes numerous achievements such as ordering of gene network and integration of genomic. This technology is well established as means for investigating patterns of gene expression. DNA micro-arrays utilize Affymetric chips where a large quantity of DNA sequences may be synthesized. There are two general type of conventional DNA array spotter: contact and piezoelectric. The contact technology used spotting pin technology to make contact with the glass slide surface. This may caused damage or scratches to the surface matrix where protein will be contaminated and may not bind specifically. Piezoelectric technology available at this present time on the other hand requires the analyzer to print the result that can only be done within the laboratory despite of mass production. Therefore, in this paper, high-throughput technology is developed for providing greater consistency in feature spot without touching the glass slide surface.

Catalytic combustion type hydrogen gas sensor using TiO2 and UV LED (TiO2 광촉매와 UV LED를 이용한 접촉연소식 수소센서)

  • Hong, Dae-Ung;Han, Chi-Hwan;Han, Sang-Do;Gwak, Ji-Hye;Lee, Sang-Yeol
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.7-10
    • /
    • 2007
  • A thick film catalytic gas sensors which can be operated at $142^{\circ}C$ in presence of ultra violet-light emitting diode has been developed to measure hydrogen concentration in 0-5 % range. The sensing material as a combustion catalyst consists of $TiO_{2}$ (5 wt%) and Pd/Pt (20 wt%) supported on $Al_{2}O_{3}$ powder and the reference material to compensate the heat capacity of it in a bridge circuit was an catalyst free $Al_{2}O_{3}$ powder. Platinum heater and sensor materials were formed on the alumina plate by screen printing method and heat treatment. The effect of UV radiation in the presence of photo catalyst $TiO_{2}$ on the sensor sensitivity, response and recovery time has been investigated. The reduction of operating temperature from $192^{\circ}C$ to $142^{\circ}C$ for hydrogen gas sensing property in presence of UV radiation is attributed to the hydroxy radical and superoxide which was formed at the surface of $TiO_{2}$ under UV radiation.

Characteristics of CuO doped WO3-SnO2 Thick Film Gas Sensors (CuO가 첨가된 WO3-SnO2 후막 가스센서 특성 연구)

  • Lee, Don-Kyu;Shin, Deuck-Jin;Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.956-960
    • /
    • 2010
  • CuO doped $WO_3-SnO_2$ thick film gas sensors were fabricated by screen printing method on alumina substrates and heat-treated at $350^{\circ}C$ in air. The effects of mixing ratio of $WO_3$ with $SnO_2$ on the structural and morphological properties of $WO_3-SnO_2$ were investigated X-ray diffraction and Scanning Electron Microscope. The structural properties of the $WO_3-SnO_2$:CuO thick film by XRD showed that the monoclinic of $WO_3$ and the tetragonal of $SnO_2$ phase were mixed. Nano CuO was coated on the $WO_3-SnO_2$ surface and then the surface of $WO_3$ was coated with $SnO_2$ particles with $1\sim1.5{\mu}m$ in diameters, as confirmed form the SEM image. The sensitivity of the $WO_3-SnO_2$:CuO sensor to 2000 ppm $CO_2$ gas and 50 ppm $H_2S$ gas for the various ratio of $WO_3$ and $SnO_2$ was investigated. The 4 wt% CuO doped $WO_3-SnO_2$(75:25) tkick films showed the highest sensitivity to $CO_2$ gas and $H_2S$ gas.

Gas Sensing Characteristics and Preparation of SnO2 Nano Powders (SnO2 나노 분말의 합성 및 가스 감응 특성)

  • Lee, Ji-Young;Yu, Yoon-Sic;Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.589-593
    • /
    • 2011
  • [ $SnO_2$ ]nano powders were prepared by solution reduction method using tin chloride($SnCl_2{\cdot}2H_2O$), hydrazine($N_2H_4$) and NaOH. The $SnO_2$ thick films for gas sensors were fabricated by screen printing method on alumina substrates and annealed at $300^{\circ}C$ in air, respectively. XRD patterns of the $SnO_2$ nano powders showed the tetragonal structure with (110) dominant orientation. The particle size of $SnO_2$ nano powders at the ratio of $SnCl_2:N_2H_4$+NaOH= 1:6 was about 60 nm. The sensing characteristics were investigated by measuring the electrical resistance of each sensor in a test box. Sensitivity of $SnO_2$ gas sensor to 5 ppm $CH_4$gas and 5 ppm $CH_3CH_2CH_3$ gas was investigated for various $SnCl_2:N_2H_4$+NaOH proportion. The highest sensitivity to $CH_4$ gas and $CH_3CH_2CH_3$ gas of $SnO_2$ sensors was observed at the $SnCl_2:N_2H_4$+NaOH= 1:8 and $SnCl_2:N_2H_4$+NaOH= 1:6, respectively. Response and recovery times of $SnO_2$ gas sensors prepared by $SnCl_2:N_2H_4$+NaOH= 1:6 was about 40 s and 30 s, respectively.