• Title/Summary/Keyword: Electronic packaging material

Search Result 169, Processing Time 0.023 seconds

An Experimental Technique with Pattern Recognition for Deformation Measurement of Small Structures (패턴 인식을 통한 미소 구조물의 변형 측정 기법 개발)

  • 박태상;백동천;이순복
    • Transactions of Materials Processing
    • /
    • v.11 no.7
    • /
    • pp.614-619
    • /
    • 2002
  • For an accurate measurement of the material behavior of small structures, a new optical experimental technique is proposed to measure the deformation. The test method uses the dual microscope that can measure the relative deformation of two adjacent regions. The magnified view is captured by CCD cameras and the relative deformation can be measured by the pattern matching and tracing method. Using this experimental technique, the deformation of solder joints in electronic packaging and the strain of the nickel thin film are measured.

Electrodeposited Tin Properties & Their Effect on Component Finish Reliability

  • Fusco Phil;Schetty Rob
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2004.09a
    • /
    • pp.201-209
    • /
    • 2004
  • As the European Community's Directive on the Restriction of Hazardous Substances in Electrical and Electronic Equipment banning lead (Pb) in electronics products will take effect on July 1, 2006, most electronics manufacturers will be commencing with volume production of Pb-free components by the middle of 2004. Electrodeposited pure tin finishes on electronic components are a leading contender to replace the industry standard tin-lead. Commensurate with this shift will be a somewhat steep learning curve as manufacturers adapt a variety of equipment and processes to contend with the issues surrounding this critical, industry-wide material conversion. Since the electrodeposited finish directly influences the critical reliability characteristics of the component itself, the nature of the Pb-free component finish must be well characterized and understood. Only through a thorough examination of the attributes of the electroplated tin deposit can critical decisions be made regarding component finish reliability. This paper investigates the properties of electrodeposited tin that may have an effect on component reliability, namely, grain structure (size and shape), oxide formation, tin whisker formation, and solderability. Data will be presented from laboratory and production settings, with the objective being to enable manufacturers to draw their own conclusions regarding previously established perceptions and misconceptions about electrodeposited tin properties.

  • PDF

Practical Application of Lead-free Solder in Electronic Products

  • Cho Il-Je;Chae Kyu-Sang;Min Jae-Sang;Kim Ik-Joo
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2004.09a
    • /
    • pp.93-99
    • /
    • 2004
  • At present, LG Electronics pushes ahead to eliminate the Pb(Lead) -a hazardous material- from all products. Especially, we have performed to select the optimum standard composition of lead free alloy for the application to products for about 3 years from 2000. These days, we have the chance for applying to the mass-production. This project constructed the system for applying the lead free solders on consumer electronic products, which is one of the major products of the LG Electronics. To select the lead free solders with corresponding to the product features, we have passed through the test and applied with Sn-3.0Ag-0.5Cu alloy system to our products, and for the application to the high melting temperature composition, we secured the thermal resistance of the many parts and substrate and optimized the processing conditions. We have operated the temperature cycling test and the high temperature storage test under the standards to confirm the reliability of the products. On these samples, we considered the consequence of our decision by the operating test. For the long life time of the product, we have operated the temperature cycling test at $-45^{\circ}C-+125^{\circ}C$, 1 cycle/hour, 1000 cycles. Also we have tested the tin whisker growth about lead free plating on lead finish. We have analyzed with the SEM, EDS and any other equipment for confirming the failure mode at the joint and the tin whisker growth on lead free finish.

  • PDF

Technology of Flexible Semiconductor/Memory Device (유연 반도체/메모리 소자 기술)

  • Ahn, Jong-Hyun;Lee, Hyouk;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.1-9
    • /
    • 2013
  • Recently flexible electronic devices have attracted a great deal of attention because of new application possibilities including flexible display, flexible memory, flexible solar cell and flexible sensor. In particular, development of flexible memory is essential to complete the flexible integrated systems such as flexible smart phone and wearable computer. Research of flexible memory has primarily focused on organic-based materials. However, organic flexible memory has still several disadvantages, including lower electrical performance and long-term reliability. Therefore, emerging research in flexible electronics seeks to develop flexible and stretchable technologies that offer the high performance of conventional wafer-based devices as well as superior flexibility. Development of flexible memory with inorganic silicon materials is based on the design principle that any material, in sufficiently thin form, is flexible and bendable since the bending strain is directly proportional to thickness. This article reviews progress in recent technologies for flexible memory and flexible electronics with inorganic silicon materials, including transfer printing technology, wavy or serpentine interconnection structure for reducing strain, and wafer thinning technology.

Atmospheric Plasma Treatment on Copper for Organic Cleaning in Copper Electroplating Process: Towards Microelectronic Packaging Industry

  • Hong, Sei-Hwan;Choi, Woo-Young;Park, Jae-Hyun;Hong, Sang-Jeen
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.71-74
    • /
    • 2009
  • Electroplated Cu is a cost efficient metallization method in microelectronic packaging applications. Typically in 3-D chip staking technology, utilizing through silicon via (TSV), electroplated Cu metallization is inevitable for the throughput as well as reducing the cost of ownership (COO).To achieve a comparable film quality to sputtering or CVD, a pre-cleaning process as well as plating process is crucial. In this research, atmospheric plasma is employed to reduce the usage of chemicals, such as trichloroethylene (TCE) and sodium hydroxide (NaHO), by substituting the chemical assisted organic cleaning process with plasma surface treatment for Cu electroplating. By employing atmospheric plasma treatment, marginally acceptable electroplating and cleaning results are achieved without the use of hazardous chemicals. The experimental results show that the substitution of the chemical process with plasma treatment is plausible from an environmentally friendly aspect. In addition, plasma treatment on immersion Sn/Cu was also performed to find out the solderability of plasma treated Sn/Cu for practical industrial applications.

Resistive Switching Properties of N and F co-doped ZnO

  • Kim, Minjae;Kang, Kyung-Mun;Wang, Yue;Chabungbam, Akendra Singh;Kim, Dong-eun;Kim, Hyung Nam;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.53-58
    • /
    • 2022
  • One of the most promising emerging technologies for the next generation of nonvolatile memory devices based on resistive switching (RS) is the resistive random-access memory mechanism. To date, RS effects have been found in many transition metal oxides. However, no clear evidence has been reported that ZnO-based resistive transition mechanisms could be associated with strong correlation effects. Here, we investigated N, F-co-doped ZnO (NFZO), which shows bipolar RS. Conducting micro spectroscopic studies on exposed surfaces helps tracking the behavioral change in systematic electronic structural changes during low and high resistance condition of the material. The significant difference in electronic conductivity was observed to attribute to the field-induced oxygen vacancy that causes the metal-insulator Mott transition on the surface. In this study, we showed the strong correlation effects that can be explored and incorporated in the field of multifunctional oxide electrons devices.

Thermo-Mechanical Reliability of TSV based 3D-IC (TSV 기반 3차원 소자의 열적-기계적 신뢰성)

  • Yoon, Taeshik;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.35-43
    • /
    • 2017
  • The three-dimensional integrated circuit (3D-IC) is a general trend for the miniaturized and high-performance electronic devices. The through-silicon-via (TSV) is the advanced interconnection method to achieve 3D integration, which uses vertical metal via through silicon substrate. However, the TSV based 3D-IC undergoes severe thermo-mechanical stress due to the CTE (coefficient of thermal expansion) mismatch between via and silicon. The thermo-mechanical stress induces mechanical failure on silicon and silicon-via interface, which reduces the device reliability. In this paper, the thermo-mechanical reliability of TSV based 3D-IC is reviewed in terms of mechanical fracture, heat conduction, and material characteristic. Furthermore, the state of the art via-level and package-level design techniques are introduced to improve the reliability of TSV based 3D-IC.

Electrical Properties of Silicone Gels due to the Curing Condition (경화조건에 따른 실리콘 젤의 전기적 특성)

  • 홍능표;이수원;홍진웅
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.1
    • /
    • pp.86-92
    • /
    • 2000
  • Recently, more advanced electronic elements become, they consume powerful and radiate more heat in devices. So the most suitable packaging technique is keenly needed. The most important purpose of packaging is to protect devices within a system for a long time and to prevent life of devices from external environments; floating ions such as humidity or sodium, and exposure from ultraviolet rays. In order to study the electrical properties of silicone gels often used as packing material due to the curing condition, volume resistivity and AC breakdown experiment are performed. Specimens are made up at several cured times and temperatures condition ; 0.5[H], 1[H] and 2[H] at 100[$^{\circ}C$], 125[$^{\circ}C$], 150[$^{\circ}C$], 160[$^{\circ}C$], 170[$^{\circ}C$] and 180[$^{\circ}C$]. It is confirmed that from volume resistivity experiment liquid silicone become get state at 90~100 [$^{\circ}C$] and cured specimen for 1~2[H] at 170[$^{\circ}C$] are superior in electrical properties.

  • PDF

Analytical modeling enables explanation of paradoxical behaviors of electronic and optical materials and assemblies

  • Suhir, Ephraim
    • Advances in materials Research
    • /
    • v.6 no.2
    • /
    • pp.185-220
    • /
    • 2017
  • Merits, attributes and challenges associated with the application of analytical modeling in electronics and photonics materials science are addressed, based mostly on the author's research during his tenure with Bell Labs, University-of-California, Portland State University, and small business innovative research (SBIR) ERS Co., USA. The emphasis is on practically important, yet often paradoxical, i.e., intuitively non-obvious, material behaviors. It is concluded that when material reliability is crucial, ability to effectively quantify it is imperative, and that analytical modeling is the most suitable, although never straightforward, technique to understand, explain and quantify material behaviors, especially in extreme, extraordinary and paradoxical situations.