• Title/Summary/Keyword: Electronic modules

Search Result 491, Processing Time 0.03 seconds

Multi-Object Tracking Based on Keypoints Using Homography in Mobile Environments (모바일 환경 Homography를 이용한 특징점 기반 다중 객체 추적)

  • Han, Woo ri;Kim, Young-Seop;Lee, Yong-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.67-72
    • /
    • 2015
  • This paper proposes an object tracking system based on keypoints using homography in mobile environments. The proposed system is based on markerless tracking, and there are four modules which are recognition, tracking, detecting and learning module. Recognition module detects and identifies an object to be matched on current frame correspond to the database using LSH through SURF, and then this module generates a standard object information. Tracking module tracks an object using homography information that generate by being matched on the learned object keypoints to the current object keypoints. Then update the window included the object for defining object's pose. Detecting module finds out the object based on having the best possible knowledge available among the learned objects information, when the system fails to track. The experimental results show that the proposed system is able to recognize and track objects with updating object's pose for the use of mobile platform.

Multi-Object Tracking based on Reliability Assessment of Learning in Mobile Environment (모바일 환경 신뢰도 평가 학습에 의한 다중 객체 추적)

  • Han, Woo ri;Kim, Young-Seop;Lee, Yong-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.73-77
    • /
    • 2015
  • This paper proposes an object tracking system according to reliability assessment of learning in mobile environments. The proposed system is based on markerless tracking, and there are four modules which are recognition, tracking, detecting and learning module. Recognition module detects and identifies an object to be matched on current frame correspond to the database using LSH through SURF, and then this module generates a standard object information that has the best reliability of learning. The standard object information is used for evaluating and learning the object that is successful tracking in tracking module. Detecting module finds out the object based on having the best possible knowledge available among the learned objects information, when the system fails to track. The experimental results show that the proposed system is able to recognize and track the reliable objects with reliability assessment of learning for the use of mobile platform.

Control of Glass Infiltration at the Al2O3/Glass/Al2O3 Interface

  • Jo, Tae-Jin;Yeo, Dong-Hun;Shin, Hyo-Soon;Hong, Youn-Woo;Cho, Yong-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.1
    • /
    • pp.32-34
    • /
    • 2011
  • A zero-shrinkage sintering process in which the shrinkage of the x-y axis is controlled to be zero is in great demand due to the high integration trend in ceramic modules. Among the zero-shrinkage sintering processes available, the glass infiltration method proposed in the preliminary study with an $Al_2O_3/Glass/Al_2O_3$ structure is one promising method. However, problems exist in regard to the glass infiltration method, including partially incomplete joining between $Al_2O_3$ and glass layers due to the precipitate of Ti-Pb rich phase during the sintering process. Therefore, we wish to solve the de-lamination problems and suggest a mechanism for delamination and the solutions in the zero-shrinkage low temperature co-fired ceramic (LTCC) layers. The de-lamination problems diminished using the Pb-BSi-O glass without $TiO_2$ in Pb-B-Ti-Si-O glass and produced a very dense zero-shrinkage LTCC.

Plasma-Sprayed $Al_{2}O_{3}-SiO_{2}$ Multi-Oxide Films on Stainless Steel Substrate

  • Korobova, N.;Soh, Deawha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.116-119
    • /
    • 2000
  • The advantage of plasma-sprayed coating is their good resistance against thermal shock due to the porous state of the coated layer with a consequently low Youngs modules. However, the existence of many pores with a bimodal distribution and a laminar structure in the coating reduces coating strength and oxidation protection of the base metals. In order to counteract these problems, there have been many efforts to obtain dense coatings by spraying under low pressure or vacuum and by controlling particle size and morphology of the spraying materials. The aim of the present study is to survey the effects of the HIP treatment between 1100 and 130$0^{\circ}C$ on plasma-sprayed oxide coating of A1$_2$O$_3$, A1$_2$O$_3$-SiO$_2$ on the metal substrate (type C18N10T stainless steel). These effects were characterized by phase identification, Vickers hardness measurement, and tensile test before and after HIPing, These results show that high-pressure treatment has an advantage for improving adhesive strength and Vickers hardness of plasma- sprayed coatings.

  • PDF

A Study on properties of Lower Electrode thin films solar cell for Mo thin film (박막태양전지 하부전극용 Mo 박막특성 연구)

  • Yang, Hyeon-Hun;Kim, Young-Jun;Jeong, Woon-Jo;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.321-322
    • /
    • 2007
  • In order to increase the cost effectiveness of solar cells, module production should be treated more comprehensively. Back contact cells offer distinct advantage in the interconnection of cells to modules. Thereby Mo thin film were prepared in order to clarify optimum conditions for growth of the thin film depending upon process, and then by changing a number of deposition conditions and substrate temperature conditions variously, structural and electrical characteristics were measured. For the manufacture of the Mo were vapor-deposited in the named order. Among them, Mo were vapor-deposited by using the sputtering method in consideration of their adhesive force to the substrate, and the DC power was controlled so that the composition of Mo, while the surface temperature having an effect on the quality of the thin film was changed from R.T$[^{\circ}C]$ to $200[^{\circ}C]$ at intervals of $50[^{\circ}C]$. Micro-structural studies were carried out by XRD (D/MAX-1200, Rigaku Co.) and SEM (JSM-5400, Jeol Co.). Electrical properties were measured by CMT-SR3000 Measurement System.

  • PDF

Fracture and Residual Stresses in $Metal/Al_2O_3-SiO_2$ System

  • Soh, D.;Korobova, N.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.308-312
    • /
    • 2003
  • The packaging of the integrated circuits requires knowledge of ceramics and metals to accommodate the fabrication of modules that are used to construct subsystems and entire systems from extremely small components. Composite ceramics ($Al_2O_3-SiO_2$) were tested for substrates. A stress analysis was conducted for a linear work-hardening metal cylinder embedded in an infinite ceramic matrix. The bond between the metal and ceramic was established at high temperature and stresses developed during cooling to room temperature. The calculations showed that the stresses depend on the mismatch in thermal expansion, the elastic properties, and the yield strength and work hardening rate of the metal. Experimental measurements of the surface stresses have also been made on a $Cu/Al_2O_3-SiO_2$ ceramic system, using an indentation technique. A comparison revealed that the calculated stresses were appreciably larger than the measured surface stresses, indicating an important difference between the bulk and surface residual stresses. However, it was also shown that porosity in the metal could plastically expand and permit substantial dilatational relaxation of the residual stresses. Conversely it was noted that pore clusters were capable of initiating ductile rupture, by means of a plastic instability, in the presence of appreciable tri-axiality. The role of ceramics for packaging of microelectronics will continue to be extremely challenging.

  • PDF

Seperate Driving System For Large Area X-ray Detector In Radiology (대면적 X-ray 검출기를 위한 분할 구동 시스템)

  • Lee, D.G.;Park, J.K.;Kim, D.H.;Nam, S.H.;Ahn, S.H.;Park, H.D.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.388-391
    • /
    • 2003
  • The properties of these detectors can be controlled by electronics and exposure conditions. Flat-panel detectors for digital diagnostic imaging convert incident x-ray images to charge images. Flat panel detectors gain more interest real time medical x-ray imaging. Active area of flat panel detector is $14{\times}17$ inch. Detector is based on a $2560{\times}3072$ away of photoconductor and TFT pixels. X-ray conversion layer is deposited upper TFT array flat panel with a 500m by thermal deposition technology. Thickness uniformity of this layer is made of thickness control technology(5%) of thermal deposition system. Each $139m{\times}139m$ pixel is made of thin film transistor technology, a storage capacitor and charge collection electrode having geometrical fill factor of 86%. Using the separate driving system of two dimensional mosaic modules for large area, that is able to 4.2 second per frame. Imaging performance is suited for digital radiography imaging substitute by conventional radiography film system..

  • PDF

The Effect of Electrical Properties with Degradation of EVA sheet and Electrode in Photovoltaic Module (태양전지모듈의 EVA sheet 열화와 전극부식이 전기적 특성에 미치는 영향)

  • Kang, Gi-Hwan;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.26-28
    • /
    • 2005
  • In this paper, degradation in field-aged PV modules including degradation of interconnect, discoloration of encapsulant and hot spot have been observed and analyzed. From the results, photovoltaic module installed for 15 years shows around 13~20% drop of electrical properties due to the interconnect degradation and PV module passed 19 years has been found to drop of around 20% mainly by the encapsulant discoloration. Fill factor of the electrode oxidized photovoltaic module has been dropped by the amount of 6~10% due to the change of irradiance. It is because maximum voltage(Vmp) decreases according to the increase of irradiance.

  • PDF

Fabrication of SiCN Microstructures for Super-High Temperature MEMS and Its Characteristics (초고온 MEMS용 SiCN 미세구조물 제작과 그 특성)

  • Lee, Gyu-Chul;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.392-393
    • /
    • 2006
  • This paper describes the fabrication of SiCN microstructures for super-high temperature MEMS using photopolymerization of pre-ceramic polymer. In this work. polysilazane liquide as a precursor was deposited on Si wafers by spin coating. microstructured and solidificated by UV lithography. and removed from the substrate. The resulting solid polymer microstructures were cross-linked under HIP process and pyrolyzed to form a ceramic of withstanding over $1400^{\circ}C$. Finally, the fabricated SiCN microstructures were annealed at $1400^{\circ}C$ in a nitrogen atmosphere. Mechanical characteristics of the SiCN microstructure with different fabrication process conditions were evaluated. The elastic modules. hardness and tensile strength of the SiC microstructure implemented under optimum process conditions are 94.5 GPa, 10.5 GPa and 11.7 N/min, respectively. Consequently, the SiCN microstructure proposed in this work is very suitable for super-high temperature MEMS application due to very simple fabrication process and the potential possiblity of sophisticated multlayer or 3D microstructures as well as its good mechanical properties.

  • PDF

The Effect of EVA Sheet Gel Content on Photovoltaic Modules Durability (EVA Sheet의 Gel Content가 태양전지모듈의 내구성에 미치는 영향)

  • Kang, Gi-Hwan;Park, Chi-Hong;Kim, Kyung-Soo;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.20-21
    • /
    • 2006
  • In this paper, we studied the influence of EVA sheet gel content on photovoltaic module durability. Depending on thermal curing temperature and time during lamination, there are dramatic changes on chemical and physical characteristics. To find the optimum PV module process condition, Glass/EVA/Back Sheet scheme was made. Gel Content, FT-IR spectrum and SEM were used for the detail analysis. From these results, $110^{\circ}C/6min$ and $130^{\circ}C/4min$ lamination condition could be suggested for the best one for durable PV module processing. The further analysis is described in the following paper.

  • PDF