• Title/Summary/Keyword: Electronic learning

Search Result 1,340, Processing Time 0.03 seconds

The Prediction of Bidding Price using Deep Learning in the Electronic Bidding (전자입찰에서 딥러닝을 이용한 입찰 가격예측)

  • Hwang, Dae-Hyeon;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.147-152
    • /
    • 2020
  • The bidding program uses statistical analysis method of the collected bidding information and the accumulated bidding results from the public/private sector; however, it is not easy to predict the accurate bidding price by winning the bid method through multiple lottery. Therefore, this paper analyzes the accuracy of the current state data of the electric construction bid from January 2015 to August 2019 acquired from the electric net, which is an electronic bidding site, We use MLP and RNN method, and proposes a technique to predict the bidding amount necessary for the winning bid by predicting the amount between the first and the lowest bidder.

Implementation of a Web-based Hybrid Experimental System for Electric and Electronic Circuits (웹 기반 하이브리드 전기전자회로 실험시스템의 구현)

  • Kim, Dong-Sik;Choi, Kwan-Sun;Moon, Il-Hyun;Lee, Sun-Heum
    • The Journal of Korean Association of Computer Education
    • /
    • v.10 no.5
    • /
    • pp.53-60
    • /
    • 2007
  • To enhance learning efficiency, we implement a hybrid experimental system for electrical and electronic circuits where web-based virtual laboratory system and distant education system are properly integrated. In the first stage, we developed web-based virtual laboratory systems for electrical/electronic circuit experiments, which are composed of three important sessions and their management system: concept learning, virtual experiment, assessment. In the second stage, we have implemented cost-effective distant laboratory systems for practicing electric/electronic circuits, which can be used to eliminate the lack of reality occurred during virtual laboratory session. The proposed virtual/ distant laboratory systems can be used in stand-alone fashion, but to enhance learning efficiency we integrated them and developed a creative hybrid experimental system for electric and electronic circuits.

  • PDF

Research for Radar Signal Classification Model Using Deep Learning Technique (딥 러닝 기법을 이용한 레이더 신호 분류 모델 연구)

  • Kim, Yongjun;Yu, Kihun;Han, Jinwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.170-178
    • /
    • 2019
  • Classification of radar signals in the field of electronic warfare is a problem of discriminating threat types by analyzing enemy threat radar signals such as aircraft, radar, and missile received through electronic warfare equipment. Recent radar systems have adopted a variety of modulation schemes that are different from those used in conventional systems, and are often difficult to analyze using existing algorithms. Also, it is necessary to design a robust algorithm for the signal received in the real environment due to the environmental influence and the measurement error due to the characteristics of the hardware. In this paper, we propose a radar signal classification method which are not affected by radar signal modulation methods and noise generation by using deep learning techniques.

A Navigation System for Mobile Robot

  • Zhang, Yuanliang;Chong, Kil-To
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.118-120
    • /
    • 2009
  • In this paper, we present the Q-learning method for adaptive traffic signal control on the basis of multi-agent technology. The structure is composed of sixphase agents and one intersection agent. Wireless communication network provides the possibility of the cooperation of agents. As one kind of reinforcement learning, Q-learning is adopted as the algorithm of the control mechanism, which can acquire optical control strategies from delayed reward; furthermore, we adopt dynamic learning method instead of static method, which is more practical. Simulation result indicates that it is more effective than traditional signal system.

  • PDF

Fuzzy Learning Vector Quantization based on Fuzzy k-Nearest Neighbor Prototypes

  • Roh, Seok-Beom;Jeong, Ji-Won;Ahn, Tae-Chon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.2
    • /
    • pp.84-88
    • /
    • 2011
  • In this paper, a new competition strategy for learning vector quantization is proposed. The simple competitive strategy used for learning vector quantization moves the winning prototype which is the closest to the newly given data pattern. We propose a new learning strategy based on k-nearest neighbor prototypes as the winning prototypes. The selection of several prototypes as the winning prototypes guarantees that the updating process occurs more frequently. The design is illustrated with the aid of numeric examples that provide a detailed insight into the performance of the proposed learning strategy.

Development of Creative Convergence Talent in the era of the 4th Industrial Revolution through Self-Directed Mathematical Competency

  • Seung-Woo, LEE;Sangwon, LEE
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.86-93
    • /
    • 2022
  • To combine the science and technology creativity necessary in the era of the 4th Industrial Revolution, it is necessary to cultivate talents who can discover new knowledge and create new values by combining various knowledge with self-directed mathematical competencies. This research attempted to lay the foundation for the curriculum for fostering future creative convergence talent by preparing, executing, and reflecting on the learning plan after learners themselves understand their level and status through self-directed learning. Firstly, We would like to present a teaching-learning plan based on the essential capabilities of the future society, where the development of a curriculum based on mathematics curriculum and intelligent informatization are accelerated. Secondly, an educational design model system diagram was presented to strengthen the self-directed learning ability of mathematics subjects in the electronic engineering curriculum. Consequently, through a survey, we would like to propose the establishment of an educational system necessary for the 4th industry by analyzing learning ability through self-directed learning teaching methods of subjects related to mathematics, probability, and statistics.

Estimating Indoor Radio Environment Maps with Mobile Robots and Machine Learning

  • Taewoong Hwang;Mario R. Camana Acosta;Carla E. Garcia Moreta;Insoo Koo
    • International journal of advanced smart convergence
    • /
    • v.12 no.1
    • /
    • pp.92-100
    • /
    • 2023
  • Wireless communication technology is becoming increasingly prevalent in smart factories, but the rise in the number of wireless devices can lead to interference in the ISM band and obstacles like metal blocks within the factory can weaken communication signals, creating radio shadow areas that impede information exchange. Consequently, accurately determining the radio communication coverage range is crucial. To address this issue, a Radio Environment Map (REM) can be used to provide information about the radio environment in a specific area. In this paper, a technique for estimating an indoor REM usinga mobile robot and machine learning methods is introduced. The mobile robot first collects and processes data, including the Received Signal Strength Indicator (RSSI) and location estimation. This data is then used to implement the REM through machine learning regression algorithms such as Extra Tree Regressor, Random Forest Regressor, and Decision Tree Regressor. Furthermore, the numerical and visual performance of REM for each model can be assessed in terms of R2 and Root Mean Square Error (RMSE).

Prediction of Budget Prices in Electronic Bidding using Deep Learning Model (딥러닝 모델을 이용한 전자 입찰에서의 예정가격 예측)

  • Eun-Seo Lee;Gwi-Man Bak;Ji-Eun Lee;Young-Chul Bae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1171-1176
    • /
    • 2023
  • In this paper, we predicts the estimated price using the DNBP (Deep learning Network to predict Budget Price) model with bidding data obtained from the bidding websites, ElecNet and OK EMS. We use the DNBP model to predict four lottery preliminary price, calculate their arithmetic mean, and then estimate the expected budget price ratio. We evaluate the model's performance by comparing it with the actual expected budget price ratio. We train the DNBP model by removing some of the 15 input nodes. The prediction results showed the lowest RMSE of 0.75788% when the model had 6 input nodes (a, g, h, i, j, k).

A Preliminary Study on Clinical Decision Support System based on Classification Learning of Electronic Medical Records

  • Shin, Yang-Kyu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.817-824
    • /
    • 2003
  • We employed a hierarchical document classification method to classify a massive collection of electronic medical records(EMR) written in both Korean and English. Our experimental system has been learned from 5,000 records of EMR text data and predicted a newly given set of EMR text data over 68% correctly. We expect the accuracy rate can be improved greatly provided a dictionary of medical terms or a suitable medical thesaurus. The classification system might play a key role in some clinical decision support systems and various interpretation systems for clinical data.

  • PDF

Optimization of Deep Learning Model Using Genetic Algorithm in PET-CT Image Alzheimer's Classification (PET-CT 영상 알츠하이머 분류에서 유전 알고리즘 이용한 심층학습 모델 최적화)

  • Lee, Sanghyeop;Kang, Do-Young;Song, Jongkwan;Park, Jangsik
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.9
    • /
    • pp.1129-1138
    • /
    • 2020
  • The performance of convolutional deep learning networks is generally determined according to parameters of target dataset, structure of network, convolution kernel, activation function, and optimization algorithm. In this paper, a genetic algorithm is used to select the appropriate deep learning model and parameters for Alzheimer's classification and to compare the learning results with preliminary experiment. We compare and analyze the Alzheimer's disease classification performance of VGG-16, GoogLeNet, and ResNet to select an effective network for detecting AD and MCI. The simulation results show that the network structure is ResNet, the activation function is ReLU, the optimization algorithm is Adam, and the convolution kernel has a 3-dilated convolution filter for the accuracy of dementia medical images.