• Title/Summary/Keyword: Electronic learning

Search Result 1,348, Processing Time 0.022 seconds

Low-dose CT Image Denoising Using Classification Densely Connected Residual Network

  • Ming, Jun;Yi, Benshun;Zhang, Yungang;Li, Huixin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2480-2496
    • /
    • 2020
  • Considering that high-dose X-ray radiation during CT scans may bring potential risks to patients, in the medical imaging industry there has been increasing emphasis on low-dose CT. Due to complex statistical characteristics of noise found in low-dose CT images, many traditional methods are difficult to preserve structural details effectively while suppressing noise and artifacts. Inspired by the deep learning techniques, we propose a densely connected residual network (DCRN) for low-dose CT image noise cancelation, which combines the ideas of dense connection with residual learning. On one hand, dense connection maximizes information flow between layers in the network, which is beneficial to maintain structural details when denoising images. On the other hand, residual learning paired with batch normalization would allow for decreased training speed and better noise reduction performance in images. The experiments are performed on the 100 CT images selected from a public medical dataset-TCIA(The Cancer Imaging Archive). Compared with the other three competitive denoising algorithms, both subjective visual effect and objective evaluation indexes which include PSNR, RMSE, MAE and SSIM show that the proposed network can improve LDCT images quality more effectively while maintaining a low computational cost. In the objective evaluation indexes, the highest PSNR 33.67, RMSE 5.659, MAE 1.965 and SSIM 0.9434 are achieved by the proposed method. Especially for RMSE, compare with the best performing algorithm in the comparison algorithms, the proposed network increases it by 7 percentage points.

A Robust Deep Learning based Human Tracking Framework in Crowded Environments (혼잡 환경에서 강인한 딥러닝 기반 인간 추적 프레임워크)

  • Oh, Kyungseok;Kim, Sunghyun;Kim, Jinseop;Lee, Seunghwan
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.4
    • /
    • pp.336-344
    • /
    • 2021
  • This paper presents a robust deep learning-based human tracking framework in crowded environments. For practical human tracking applications, a target must be robustly tracked even in undetected or overcrowded situations. The proposed framework consists of two parts: robust deep learning-based human detection and tracking while recognizing the aforementioned situations. In the former part, target candidates are detected using Detectron2, which is one of the powerful deep learning tools, and their weights are computed and assigned. Subsequently, a candidate with the highest weight is extracted and is utilized to track the target human using a Kalman filter. If the bounding boxes of the extracted candidate and another candidate are overlapped, it is regarded as a crowded situation. In this situation, the center information of the extracted candidate is compensated using the state estimated prior to the crowded situation. When candidates are not detected from Detectron2, it means that the target is completely occluded and the next state of the target is estimated using the Kalman prediction step only. In two experiments, people wearing the same color clothes and having a similar height roam around the given place by overlapping one another. The average error of the proposed framework was measured and compared with one of the conventional approaches. In the error result, the proposed framework showed its robustness in the crowded environments.

Development of Deep Learning Structure to Secure Visibility of Outdoor LED Display Board According to Weather Change (날씨 변화에 따른 실외 LED 전광판의 시인성 확보를 위한 딥러닝 구조 개발)

  • Sun-Gu Lee;Tae-Yoon Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.340-344
    • /
    • 2023
  • In this paper, we propose a study on the development of deep learning structure to secure visibility of outdoor LED display board according to weather change. The proposed technique secures the visibility of the outdoor LED display board by automatically adjusting the LED luminance according to the weather change using deep learning using an imaging device. In order to automatically adjust the LED luminance according to weather changes, a deep learning model that can classify the weather is created by learning it using a convolutional network after first going through a preprocessing process for the flattened background part image data. The applied deep learning network reduces the difference between the input value and the output value using the Residual learning function, inducing learning while taking the characteristics of the initial input value. Next, by using a controller that recognizes the weather and adjusts the luminance of the outdoor LED display board according to the weather change, the luminance is changed so that the luminance increases when the surrounding environment becomes bright, so that it can be seen clearly. In addition, when the surrounding environment becomes dark, the visibility is reduced due to scattering of light, so the brightness of the electronic display board is lowered so that it can be seen clearly. By applying the method proposed in this paper, the result of the certified measurement test of the luminance measurement according to the weather change of the LED sign board confirmed that the visibility of the outdoor LED sign board was secured according to the weather change.

Reinforce Learning Based Cooperative Sensing for Cognitive Radio Networks (인지 무선 시스템에서 강화학습 기반 협력 센싱 기법)

  • Kim, Do-Yun;Choi, Young-June;Roh, Bong-Soo;Choi, Jeung-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.1043-1050
    • /
    • 2018
  • In this paper, we propose a reinforce learning based on cooperative sensing scheme to select optimal secondary users(SUs) to enhance the detection performance of spectrum sensing in Cognitive radio(CR) networks. The SU with high accuracy is identified based on the similarity between the global sensing result obtained through cooperative sensing and the local sensing result of the SU. A fusion center(FC) uses similarity of SUs as reward value for Q-learning to determine SUs which participate in cooperative sensing with accurate sensing results. The experimental results show that the proposed method improves the detection performance compared to conventional cooperative sensing schemes.

Attention Deep Neural Networks Learning based on Multiple Loss functions for Video Face Recognition (비디오 얼굴인식을 위한 다중 손실 함수 기반 어텐션 심층신경망 학습 제안)

  • Kim, Kyeong Tae;You, Wonsang;Choi, Jae Young
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.10
    • /
    • pp.1380-1390
    • /
    • 2021
  • The video face recognition (FR) is one of the most popular researches in the field of computer vision due to a variety of applications. In particular, research using the attention mechanism is being actively conducted. In video face recognition, attention represents where to focus on by using the input value of the whole or a specific region, or which frame to focus on when there are many frames. In this paper, we propose a novel attention based deep learning method. Main novelties of our method are (1) the use of combining two loss functions, namely weighted Softmax loss function and a Triplet loss function and (2) the feasibility of end-to-end learning which includes the feature embedding network and attention weight computation. The feature embedding network has a positive effect on the attention weight computation by using combined loss function and end-to-end learning. To demonstrate the effectiveness of our proposed method, extensive and comparative experiments have been carried out to evaluate our method on IJB-A dataset with their standard evaluation protocols. Our proposed method represented better or comparable recognition rate compared to other state-of-the-art video FR methods.

Deep Learning System based on Morphological Neural Network (몰포러지 신경망 기반 딥러닝 시스템)

  • Choi, Jong-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.1
    • /
    • pp.92-98
    • /
    • 2019
  • In this paper, we propose a deep learning system based on morphological neural network(MNN). The deep learning layers are morphological operation layer, pooling layer, ReLU layer, and the fully connected layer. The operations used in morphological layer are erosion, dilation, and edge detection, etc. Unlike CNN, the number of hidden layers and kernels applied to each layer is limited in MNN. Because of the reduction of processing time and utility of VLSI chip design, it is possible to apply MNN to various mobile embedded systems. MNN performs the edge and shape detection operations with a limited number of kernels. Through experiments using database images, it is confirmed that MNN can be used as a deep learning system and its performance.

The Effect of Task Value and Learning Satisfaction on Learning Achievement through ICT-based Statistical analysis in Computer Application Classes (컴퓨터활용 수업에서 ICT 기반 통계 분석을 통한 과제가치, 학습만족도가 학업성취에 미치는 영향)

  • Kim, No-Whan;Yoon, Sung-Ja;Kang, Eun-Hong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.2
    • /
    • pp.405-410
    • /
    • 2019
  • A nursing department of a university operates the curriculum called, "Introductory Computer Use" with its goal of achieving international certification MOS, which is caused by the result of course analysis and the easiness in getting a job overseas as a nurse. In this paper, we statistically analyze the relation among academic achievement level, task value recognition level, and learning satisfaction by using ICT-based questionnaire and SPSS/WIN 21.0. Finally, we suggest the ways to improve the class-quality and to achieve the class goals required by the course.

Intrusion Detection Approach using Feature Learning and Hierarchical Classification (특징학습과 계층분류를 이용한 침입탐지 방법 연구)

  • Han-Sung Lee;Yun-Hee Jeong;Se-Hoon Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.249-256
    • /
    • 2024
  • Machine learning-based intrusion detection methodologies require a large amount of uniform learning data for each class to be classified, and have the problem of having to retrain the entire system when adding an attack type to be detected or classified. In this paper, we use feature learning and hierarchical classification methods to solve classification problems and data imbalance problems using relatively little training data, and propose an intrusion detection methodology that makes it easy to add new attack types. The feasibility of the proposed system was verified through experiments using KDD IDS data..

A Study on Image Classification using Deep Learning-Based Transfer Learning (딥 러닝 기반의 전이 학습을 이용한 이미지 분류에 관한 연구)

  • Jung-Hee Seo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.3
    • /
    • pp.413-420
    • /
    • 2023
  • For a long time, researchers have presented excellent results in the field of image retrieval due to many studies on CBIR. However, there is still a semantic gap between these search results for images and human perception. It is still a difficult problem to classify images with a level of human perception using a small number of images. Therefore, this paper proposes an image classification model using deep learning-based transfer learning to minimize the semantic gap between images of people and search systems in image retrieval. As a result of the experiment, the loss rate of the learning model was 0.2451% and the accuracy was 0.8922%. The implementation of the proposed image classification method was able to achieve the desired goal. And in deep learning, it was confirmed that the CNN's transfer learning model method was effective in creating an image database by adding new data.

Priority-based learning automata in Q-learning random access scheme for cellular M2M communications

  • Shinkafi, Nasir A.;Bello, Lawal M.;Shu'aibu, Dahiru S.;Mitchell, Paul D.
    • ETRI Journal
    • /
    • v.43 no.5
    • /
    • pp.787-798
    • /
    • 2021
  • This paper applies learning automata to improve the performance of a Q-learning based random access channel (QL-RACH) scheme in a cellular machine-to-machine (M2M) communication system. A prioritized learning automata QL-RACH (PLA-QL-RACH) access scheme is proposed. The scheme employs a prioritized learning automata technique to improve the throughput performance by minimizing the level of interaction and collision of M2M devices with human-to-human devices sharing the RACH of a cellular system. In addition, this scheme eliminates the excessive punishment suffered by the M2M devices by controlling the administration of a penalty. Simulation results show that the proposed PLA-QL-RACH scheme improves the RACH throughput by approximately 82% and reduces access delay by 79% with faster learning convergence when compared with QL-RACH.