• Title/Summary/Keyword: Electronic learning

Search Result 1,348, Processing Time 0.024 seconds

Development of Smart Mobility System for Persons with Disabilities (장애인을 위한 스마트 모빌리티 시스템 개발)

  • Yu, Yeong Jun;Park, Se Eun;An, Tae Jun;Yang, Ji Ho;Lee, Myeong-Gyu;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.97-103
    • /
    • 2022
  • Low fertility rates and increased life expectancy further exacerbate the process of an aging society. This is also reflected in the gradual increase in the proportion of vulnerable groups in the social population. The demand for improved mobility among vulnerable groups such as the elderly or the disabled has greatly driven the growth of the electric-assisted mobility device market. However, such mobile devices generally require a certain operating capability, which limits the range of vulnerable groups who can use the device and increases the cost of learning. Therefore, autonomous driving technology needs to be introduced to make mobility easier for a wider range of vulnerable groups to meet their needs of work and leisure in different environments. This study uses mini PC Odyssey, Velodyne Lidar VLP-16, electronic device and Linux-based ROS program to realize the functions of working environment recognition, simultaneous localization, map generation and navigation of electric powered mobile devices for vulnerable groups. This autonomous driving mobility device is expected to be of great help to the vulnerable who lack the immediate response in dangerous situations.

Reducing Rural-Urban Education Gap in Uganda Through ICT Appropriate Technology (우간다의 도시-농촌 간 교육 불균형 해소를 위한 ICT 적정기술)

  • Roh, Hyosun
    • Journal of Appropriate Technology
    • /
    • v.7 no.1
    • /
    • pp.33-40
    • /
    • 2021
  • The government of Uganda, which belongs to East Africa, approved the National Vison Statement, "A transformed Ugandan society from a Peasant to a Modern and Prosperous Country within 30 years". However, the Uganda is facing the problem of unbalanced development between urban and rural area in spite of the government's efforts. In particular, the urban-rural education gap is emerging as a problem that could negatively affect national development plans. In this paper, we explain the reasons why Uganda's urban-rural educational imbalance is accelerating. In addition, we would like to introduce a way to reduce the educational imbalance by using appropriate technology of ICT such as the electronic library system.

KI-HABS: Key Information Guided Hierarchical Abstractive Summarization

  • Zhang, Mengli;Zhou, Gang;Yu, Wanting;Liu, Wenfen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4275-4291
    • /
    • 2021
  • With the unprecedented growth of textual information on the Internet, an efficient automatic summarization system has become an urgent need. Recently, the neural network models based on the encoder-decoder with an attention mechanism have demonstrated powerful capabilities in the sentence summarization task. However, for paragraphs or longer document summarization, these models fail to mine the core information in the input text, which leads to information loss and repetitions. In this paper, we propose an abstractive document summarization method by applying guidance signals of key sentences to the encoder based on the hierarchical encoder-decoder architecture, denoted as KI-HABS. Specifically, we first train an extractor to extract key sentences in the input document by the hierarchical bidirectional GRU. Then, we encode the key sentences to the key information representation in the sentence level. Finally, we adopt key information representation guided selective encoding strategies to filter source information, which establishes a connection between the key sentences and the document. We use the CNN/Daily Mail and Gigaword datasets to evaluate our model. The experimental results demonstrate that our method generates more informative and concise summaries, achieving better performance than the competitive models.

A Survey of The Status of R&D Using ICT and Artificial Intelligence in Agriculture (농업에서의 ICT와 인공지능을 활용한 연구 개발 현황 조사)

  • Seonho Khang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.104-112
    • /
    • 2023
  • Agriculture plays an industrial and economic role, as well as an environmental and ecological conservation role, group harmony and the inheritance of traditional culture. However, no matter how advanced the industry is, the basic food necessary for human life can only be produced through the photosynthesis of plants with natural resources such as the sun, water, and air. The Food and Agriculture Organization of the United Nations (FAO) predicts that the world's population will increase by another 2 billion people by 2050, and it faces a myriad of complex and diverse factors to consider, including climate change, food security concerns, and global ecosystems and political factors. In particular, in order to solve problems such as increasing productivity and production of agricultural products, improving quality, and saving energy, it is difficult to solve them with traditional farming methods. Recently, with the wind of the 4th industrial revolution, ICT convergence technology and artificial intelligence have been rapidly developing in many fields, but it is also true that the application of new technologies is somewhat delayed due to the unique characteristics of agriculture. However, in recent years, as ICT and artificial intelligence utilization technologies have been developed and applied by many researchers, a revolution is also taking place in agriculture. This paper summarizes the current state of research so far in four categories of agriculture, namely crop cultivation environment management, soil management, pest management, and irrigation management, and smart farm research data that has recently been actively developed around the world.

  • PDF

Structure Recognition Method of Invoice Document Image for Document Processing Automation (문서 처리 자동화를 위한 인보이스 이미지의 구조 인식 방법)

  • Dong-seok Lee;Soon-kak Kwon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.2
    • /
    • pp.11-19
    • /
    • 2023
  • In this paper, we propose the methods of invoice document structure recognition and of making a spreadsheet electronic document. The texts and block location information of word blocks are recognized by an optical character recognition engine through deep learning. The word blocks on the same row and same column are found through their coordinates. The document area is divided through arrangement information of the word blocks. The character recognition result is inputted in the spreadsheet based on the document structure. In simulation result, the item placement through the proposed method shows an average accuracy of 92.30%.

Audio-based COVID-19 diagnosis using separable transformer (트랜스포머를 이용한 음성기반 코비드19 진단)

  • Seungtae Kang;Gil-Jin Jang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.3
    • /
    • pp.221-225
    • /
    • 2023
  • In this paper, we proposed an efficient method for rapid diagnosis of COVID-19 by voice. A novel Strided Convolution Separable Transformer (SC-SepTr) is proposed by modifying the conventional Separable Transformer (SepTr) for audio signal recognition. The proposed method reduces the memory and computational requirements to enable rapid diagnosis of COVID-19. As a result of experiments on Coswara, it was shown that the proposed method perform rapid diagnosis with guaranteeing Area Under the Curve (AUC) performance even for a relatively small amount of learning data.

Artificial Neural Network Supported Prediction of Magnetic Properties of Bulk Metallic Glasses (인공신경망을 이용한 벌크 비정질 합금 소재의 포화자속밀도 예측 성능평가)

  • Chunghee Nam
    • Korean Journal of Materials Research
    • /
    • v.33 no.7
    • /
    • pp.273-278
    • /
    • 2023
  • In this study, based on the saturation magnetic flux density experimental values (Bs) of 622 Fe-based bulk metallic glasses (BMGs), regression models were applied to predict Bs using artificial neural networks (ANN), and prediction performance was evaluated. Model performance evaluation was investigated by using the F1 score together with the coefficient of determination (R2 score), which is mainly used in regression models. The coefficient of determination can be used as a performance indicator, since it shows the predicted results of the saturation magnetic flux density of full material datasets in a balanced way. However, the BMG alloy contains iron and requires a high saturation magnetic flux density to have excellent applicability as a soft magnetic material, and in this study F1 score was used as a performance indicator to better predict Bs above the threshold value of Bs (1.4 T). After obtaining two ANN models optimized for the R2 and F1 score conditions, respectively, their prediction performance was compared for the test data. As a case study to evaluate the prediction performance, new Fe-based BMG datasets that were not included in the training and test datasets were predicted using the two ANN models. The results showed that the model with an excellent F1 score achieved a more accurate prediction for a material with a high saturation magnetic flux density.

Develpment of Automatic Classification For Categorizing Recyclable Materials (딥러닝을 활용한 재활용 폐기물 선별 시스템 개발)

  • Park Seung Woo;Kim Hyung Don;Sim Sang Woo;Yoo, Seong Won;Kim Jae-Soo;Lee Sang Won;Jeon Woo jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.739-740
    • /
    • 2023
  • 코로나19 의 여파로 생활 폐기물은 급속도로 늘어나는 반면 재활용 사업장의 여건은 개선되지 않고 있어 재활용 산업의 인력난 해결의 필요성이 떠오르고 있다. 이를 위해 본 논문에서는 딥러닝 모델을 활용하여 재활용 폐기물을 분류하는 방법을 제시한다. 딥러닝 모델은 최신 객체 탐지 모델인 YOLOv5를 사용하고, 객체 탐지 성능을 향상시키기 위해 실제 환경에서 수집된 학습용 데이터를 직접 라벨링하여 사용한다. 실험 결과 종류별 평균 0.69의 mAP50 스코어를 기록하였으며 이를 통해 딥러닝 모델을 활용하여 재활용 폐기물을 효율적으로 분류하는 것이 가능함을 확인하였다.

  • PDF

Density Change Adaptive Congestive Scene Recognition Network

  • Jun-Hee Kim;Dae-Seok Lee;Suk-Ho Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.147-153
    • /
    • 2023
  • In recent times, an absence of effective crowd management has led to numerous stampede incidents in crowded places. A crucial component for enhancing on-site crowd management effectiveness is the utilization of crowd counting technology. Current approaches to analyzing congested scenes have evolved beyond simple crowd counting, which outputs the number of people in the targeted image to a density map. This development aligns with the demands of real-life applications, as the same number of people can exhibit vastly different crowd distributions. Therefore, solely counting the number of crowds is no longer sufficient. CSRNet stands out as one representative method within this advanced category of approaches. In this paper, we propose a crowd counting network which is adaptive to the change in the density of people in the scene, addressing the performance degradation issue observed in the existing CSRNet(Congested Scene Recognition Network) when there are changes in density. To overcome the weakness of the CSRNet, we introduce a system that takes input from the image's information and adjusts the output of CSRNet based on the features extracted from the image. This aims to improve the algorithm's adaptability to changes in density, supplementing the shortcomings identified in the original CSRNet.

Development of Monitoring System Using Residual Gas Analyzer (RGA) and Artificial Intelligence Modeling (잔류가스 분석기(RGA)와 인공지능 모델링을 이용한 모니터링 시스템 개발)

  • Ji Soo Lee;Song Hun Kim;Gyeong Su Kim;Hyo Jong Song;Sang-Hoon Park;Deuk-Hoon Goh;Bong-Jae Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.129-134
    • /
    • 2024
  • This study aims to talk about the necessity of solving the PFC gas emission problem raised by the recent development of the semiconductor industry and the remote plasma source method monitoring system used in the semiconductor industry. The 'monitoring system' means that the researchers applied machine learning to the existing monitoring technology and modeled it. In the process of this study, Residual Gas Analyzer monitoring technology and linear regression model were used. Through this model, the researchers identified emissions of at least 12700mg CO2 to 75800mg CO2 with values ranging from ion current 0.6A to 1.7A, and expect that the 'monitoring system' will contribute to the effective calculation of greenhouse gas emissions in the semiconductor industry in the future.

  • PDF