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Abstract 
 

With the unprecedented growth of textual information on the Internet, an efficient 
automatic summarization system has become an urgent need. Recently, the neural network 
models based on the encoder-decoder with an attention mechanism have demonstrated 
powerful capabilities in the sentence summarization task. However, for paragraphs or longer 
document summarization, these models fail to mine the core information in the input text, 
which leads to information loss and repetitions. In this paper, we propose an abstractive 
document summarization method by applying guidance signals of key sentences to the 
encoder based on the hierarchical encoder-decoder architecture, denoted as KI-HABS. 
Specifically, we first train an extractor to extract key sentences in the input document by the 
hierarchical bidirectional GRU. Then, we encode the key sentences to the key information 
representation in the sentence level. Finally, we adopt key information representation guided 
selective encoding strategies to filter source information, which establishes a connection 
between the key sentences and the document. We use the CNN/Daily Mail and Gigaword 
datasets to evaluate our model. The experimental results demonstrate that our method 
generates more informative and concise summaries, achieving better performance than the 
competitive models. 
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1. Introduction 

With the explosive growth of textual information on the Internet, an efficient automatic 
summarization system has become an urgent need. The ultimate goal of document 
summarization is to generate a concise and readable summary for the document while keeping 
its gist [1]. Overall, extractive summarization [2-5] and abstractive summarization [6-18] are 
the two main methods of document summarization. Extractive models directly copy a few 
significant sentences or keywords from the source text to form summaries, which is actually a 
simple compression of the source document. Abstractive models can automatically generate 
new words and linguistic phrases that are not present in the input document. Compared with 
extractive methods, abstractive summarization is considered much closer to the way human 
make a summary, but also more challenging [19].  

Recently, thanks to the continuous development of the encoder-decoder model [20], 
abstractive summarization models [10,13,21] are able to generate summaries with high 
ROUGE scores. However, because the document contains multiple sentences, the relationship 
between these sentences is complex, and there is a long-distance dependency, which makes it 
difficult for the traditional sequence-to-sequence (seq2seq) model to capture important 
information in the document. Therefore, the summary generated by the seq2seq-baseline 
model will largely obscure the main information of the input document, and even contains 
duplicate sentences [22]. Researchers found that documents and their summaries essentially 
have a sentence-word hierarchical structure rather than just a flat sequence of words [23]. 

Hierarchical neural models have shown strong performance in document-based language 
models [23] and document classification [24] tasks. In 2015, Li et al. [25] proposed a basic 
hierarchical abstractive summarization model, and Ref. 3 further expanded their model, 
summaries generated by their method are significantly better than similar methods in terms of 
informativity and readability. 

Although the document consists of multi-sentences, not all sentences contain gist 
information or useful information. Usually, a few sentences can express the core information 
of the document. In 2017, Nallapati et al. [26] summarized the content of the document just by 
directly extracting key sentences as a summary. Further, Chen et al. [27] rewrote the extracted 
sentences to construct summary sentences, which further improved the readability of the 
generated summary. In 2018, Cao et al. [28] utilized template sentences to guide the 
generation of summary and also achieved good results. In this paper, we further prove that the 
key sentences in the document can facilitate the generation of the summary. Therefore, we 
construct a key sentence extractor to extract key sentences and utilize these sentences to guide 
the encoding process. 

The key sentences in the source document contain almost all significant information [27]. 
Therefore, we believe the key sentences of the document can provide a powerful signal to 
guide the document summarization process. Based on this, we propose a key sentences guided 
abstractive document summarization model under hierarchical encoder-decoder architecture. 
We apply key-sentences-guided selective encoding strategies to filter source information by 
investigating the interactions between the input document and the key sentences. For training, 
we first determine the ground-truth key sentences by calculating the ROUGE-L recall score, 
and use them to train an extractor. Then, the extractor is used as a plug-in, integrated into the 
hierarchical encoder-decoder model, to select salient sentences from the input. Finally, use the 
selected key sentences to control the selection gate network, which can select and filter the 
sentence representations to produce a tailored sentence representation by controlling the 
information in the sentence level. 
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Our contributions are as follows: 
 Based on the hierarchical encoder-decoder architecture, we propose an abstractive 

document summarization method guided by the key sentences in the original input 
document. We propose a co-selective encoding to select information for both the 
document and the key sentences jointly. Then, using a gate vector to rebuild sentences 
representation and key sentences representation, respectively. 

 A key sentences extractor. We train a key sentences extractor to extract the significant 
sentences with high informativity in the input document. The extractor consists of a 
hierarchical bidirectional GRU. The top layer is the classification layer that decides 
whether or not each sentence belongs to the key sentences. 

 We conduct experiments on the CNN/Daily Mail and English Gigaword datasets, proving 
that our model significantly performs better than the competitive methods. 

2. Related Work 
The seq2seq is one of the mainstream frameworks in generating abstractive summaries. Rush 
et al. [10] proposed a CNN encoder and neural network language model under the seq2seq 
framework, which was the first application of the seq2seq model to the abstractive 
summarization task. After that, Zhou et al. [15], Li et al. [21] and Chopra et al. [29] further 
improved the RNN-based summarization model. In 2016, Gu et al. [30] added a copy 
mechanism. In 2017, Paulus et al. [31] proposed an intra-decoder neural attention mechanism, 
See et al. [13] introduced coverage vectors, they extended the seq2seq-baseline model. In 
recent years, the pointer mechanism has performed better and better. Li et al. [25] first 
constructed a hierarchical encoder-decoder model, which they used to train an automatic 
encoder for document summarization. Inspired by them, Cheng et al. [2], Li et al. [21] and Tan 
et al. [32] solved the long dependency problem based on encoder-decoder hierarchical 
architecture. In 2018, Li et al. [22] made further improvements on the basis of the hierarchical 
document structure. Chen et al. [27], Cao et al., [28] and Gehrmann et al. [33] operated at the 
sentence level of the input document and successfully captured the dependencies between 
sentences. In our work, we adopt hierarchical encoder-decoder architecture as our basic 
framework. The basic hierarchical encoder-decoder architecture is shown in Fig. 1. 

Key sentences have been proved beneficial for extractive document summarization 
systems. Recently, research on extractive summarization based on neural networks has 
focused on extracting and sorting complete sentences [2,35,36]. In 2018, Liu et al. [17] 
proposed an extractive summarization model based on RNN that extracts full sentences. Other 
recent researches explore alternative approaches to sentences selection [36-38]. But they 
either extract the entire sentence directly as part of the summary, or only reconstruct the 
sentence at word level, without considering the impact of the key sentences in the entire input 
document as a whole. But in fact, the set of key sentences can guide sentence-level encoding as 
a whole, thus controlling the flow of information between the encoder and the decoder, which 
helps increase the informativity and readability of the generated summary. 
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Fig. 1. The basic hierarchical encoder-decoder architecture. 

 

3. Our Model 
In this paper, we consider the task of summarizing an input document made up of multiple 
long sentences into a multi-sentence summary. The hierarchical encoder-decoder architecture 
can significantly reduce long dependency problem. Our hypothesis is that the key sentences 
can provide essential clues for the gist of the input document. Based on this, we introduce a 
key sentences driving mechanism at the sentence level, which can clearly indicate the valuable 
content of the input document.  

Therefore, we construct a Key Information Guided Hierarchical Abstractive 
Summarization model (KI-HABS), and the framework of our model is shown in Fig. 2. The 
KI-HABS model is an encoder-decoder architecture. In the encoding stage (the left half of Fig. 
2), we first utilize the trained key sentence extractor to extract key sentences from the input 
long text, these sentences contain significant information of the original text. And then, we 
encode these selected sentences together with the original input to get their vector 
representation. In order to deal with long texts, we adopt a more effective hierarchical 
architecture. In addition, in order to filter out the redundant information in the extracted key 
sentences, we designed a gate fusion mechanism to fuse the input context representation and 
the key sentence context representation. Finally, in the decoding stage (the right half of Fig. 2), 
we utilize the fused context vector to guide the KI-HABS model to generate summaries. 
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Fig. 2. The overall framework of our model. It is a hierarchical encoder-decoder architecture composed 
of word-level and sentence-level. In sentence level, we employ a key sentence extractor to select key 
sentences. We utilize a co-selective encoding to select information for both the document and the key 

sentences jointly. Then, using a gate vector to rebuild sentences representation and key sentences 
representation, respectively. Finally, we use the fusion context vector to generate summaries. 

3.1 Hierarchical Encoder 
The encoder can encode the input document into a vector representation in the hidden layer. 
Formally, given an input document D, consisting of multiple sentences: 1 2{ , , , }nD s s s= L , n 
represents the number of sentences in the document. Each sentence can be represented by the 
words that make it up: 1 2{ , , , }i i i ims w w w= L . The encoder at the word and sentence levels 
encode the words and the sentences into a vector representation, respectively. 

In our framework, we use the bidirectional GRU encoder e_fwd e_bwd{GRU ,GRU } at each 
level, which encodes input text forwardly and backwardly to generate two sequences of the 
hidden states. After receiving word ijw , the word-level encoder generates its bidirectional 

hidden representation  1 2( , , , )i i imh h h
→ → →

L  and 1 2( , , , )i i imh h h
← ← ←

L : 

 1GRU( , )ij ijijh e h
→ →

−= , (1) 

 1GRU( , )ij ijijh e h
← ←

+= , (2) 

where ijh
→

 and ijh
←

 denote the forward and backward hidden state, respectively. ije  denote the 

embedding of ijw . The final word-level hidden representation [ ; ]ij ijijh h h
→ ←

=  is the 

concatenation of ijh
→

 and ijh
←

. In particular, the entire sentence representation is the last hidden 
vector imh , the final vector representation for i-th sentence is i ime h=  that is the input of the 
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encoder in sentence level. 
After receiving vector representation ie  for i-th sentence, the encoder in sentence level 

updates hidden state 1BiGRU( , )i i ih e h −= . Particularly, for the encoders, we believe they can 
benefit from sharing parameters to promote the capacity of capturing the gist of the input text. 
So, we use a shared encoder to generate hidden state sequences for both the original sentences 
and the key sentences. In the following description, ih  and k

ih  denote the hidden 
representations for the input sentences and the key sentences, respectively. 

3.2 Key-sentenc0e Selection 
To support our model, we proposed a novel method to select salient sentences. Our research 
proved that the key sentences in the input document provide significant clues for valuable 
content, and humans tend to remember them when summarizing. In this work, we first train a 
key sentences extractor to extract the significant sentences with high informativity in the 
document. 

In 2017, Nallapati et al. [26] trained a sentence classifier in the extractive summarization 
task. Our extractor is different from theirs, we need to label sentences to indicate whether they 
are key sentences (“1” means is the key sentence, “0” is not a key sentence). Our extractor is 
shown in Fig. 3, which consists of a hierarchical bidirectional GRU. The top layer is the 
classification layer that decides whether or not each sentence belongs to the key sentences. 

During training, cross entropy is used as the loss function. We minimize the negative 
log-likelihood of the labels observed during training, as follows: 

 
1

1 ( log { 1} (1 ) log { 0})
N

ext n n n nL t p t t p t
N

= − = + − =∑ , (3) 

where {0,1}nt ∈  is the label for the sentence ns , indicating whether it is the key 
sentence( 1nt =  as the key sentence). N is the number of sentences in document D.  
 

GRU GRU

GRU

Word-level
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Classification 
layer

W11 W12

GRU

W13

GRU GRU GRU GRU GRU GRU

W21 W22 W23 W31 W32 W33

GRU GRU

1 0 1

Sentence  1 Sentence  2 Sentence  3  
Fig. 3. The architecture of the extractor 

3.3 Ground-truth Sentences 
In fact, the standard CNN/Daily Mail dataset does not provide the key sentences of the input 
document. Therefore, in order to train our key sentences extractor and key-sentence-guided 
summarizer, we need to build ground-truth sentence sets for each document. 

In our model, extractor are used to extract highly informative sentences from documents, 
which means the key sentences should contain most of the important information of the 
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original document. ROUGE-L recall score can reflect the generalization of a sentence to the 
original text. Therefore, we calculate the ROUGE-L recall score between sentence is  and the 
reference summary to obtain its informativity score, as follows: 
 ( ) ROUGE( , )i iScore s s s∗= , (4) 
where is  and s∗  represent i-th sentence and the reference summary, respectively. After that, 
we rank sentences according to their scores from highest to lowest informativity. Then, pop up 
the first-ranked sentences as a candidate key sentence. If the candidate sentence popped up can 
increase the informativity of the existing key-sentence list, we push it into the list. In particular, 
in order to ensure that the selected sentence can increase the informativity of the existing 
key-sentence list, we compare it with the previously selected sentences. If there are more than 
three words in it also appear in the previously selected sentences, we think it contains too 
much redundant information, then give it up. Repeat this until the candidate sentence does not 
meet the requirements. Finally, we obtain a list of all the ground-truth key sentences and train 
the extractor by minimizing Eq. (3). 

Our key sentences selection task is to perform at sentence level, the output layer is a 
classifier over the hidden representation ih  for each sentence in the document. The classifier 
predicts one of the following two labels: ‘1’ for the key sentence, and ‘0’ for the not key 
sentence.  

3.4 Key-sentences-guided Selective Encoding 
In the hierarchical encoder architecture, beyond encoding for the sentence in the sentence level, 
we believe each key sentence contributes differently to the document summarization task. And 
thus, we propose a co-selective encoding to select information for both the document and the 
key sentences jointly. Then, using a gate vector to rebuild sentences representation ih′  and key 
sentences representation i

kh ′ , respectively. 
Specifically, a co-selective gate vector for each ih  and k

ih  computed as follows: 
 sigmoid( )k

i q i qcoGate W h U a= + , (5) 

 sigmoid( )k k r
i q i qcoGate W h U a= + , (6) 

where 1 2[ ; ; ; ]k k k k
na h h h= L  is the key sentences sequence representation, 1 2[ ; ; ; ]r

na h h h= L  is 
the document representation. Then, ih′  and i

kh ′  are computed as follows: 
 i i ih h coGate′ = e , (7) 
 k k

i i i
kh h coGate′ = e , (8) 

where e  is element-wise multiplication. 
Using a hierarchical encoder-decoder architecture, we solve the long sentence dependency 

problem. Furthermore, by extracting key sentences and co-selective encoding, our model can 
better capture the relationship between the sentences and the hidden important clues provided 
by them. 

3.5 Hierarchical Decoder 
The decoder utilizes the vector representation of the input text passed by the encoder to 
generate summaries. In the hierarchical architecture, first the sentence-level decoder uses the 
vector representation of the document sentence passed by the encoder to generate the vector 
representation of the summary sentence. Then the word-level decoder decodes each sentence 
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to get the final words. In the decoding phase, our model adopts a single-layer unidirectional 
LSTM as the decoder both in the sentence level and word level.  

3.5.1 Sentence-level decoding 
At the sentence level, we apply a dual-attention mechanism to generate the context vector 
based on attention over both the source sentence and the extracted key sentences. Furthermore, 
we also use an intra-temporal attention function [39]. Intra-temporal attention allows the 
attention mechanism to fully consider the decision of the previous decoding step when making 
a new decision, which can effectively avoid repetition. 

More specifically, at each decoding step t, the attention score of the hidden state ih′  is 
calculated as follows: 
 tanh( )r T

ti a a i a t attne v W h U s b′= + + , (9) 
where attnb , aW , sW  and v  are learnable parameters, ts  is current decoder state (t-th 
summary sentence). We normalize the attention weights with the following temporal attention 
function, penalizing input sentences that have obtained high attention scores in past decoding 
steps: 

 
1

1

exp( )           if   =1 
exp( )       otherwise

exp( )

r
tm

r
ti

t r
jij

ti
r

e t
ee

e−

=

′


= 

∑

. (10) 

Then, we compute the normalized attention scores r
tiα , and the sentence-level context 

vector r
tc  using r

tiα : 

 
1

r ti
ti n

tll

r

r

e
e

α
=

′

′
=
∑

, (11) 

 
1

n
r r
t ti i

i
c hα

=

′=∑ . (12) 

Similar to input sentences, the key sentences attention k
tiα  and key sentences context 

vector k
tc  can be calculated using i

kh ′  and ts . Next, we adopt a gated fusion mechanism to 
incorporate the influence of key sentences into the decoding process. We first compute a 
fusion gate vector using two context vectors and then combine context vectors by the gate, as 
follows: 

 
 sigmod( )r k

t g t g tg W c U c= + , (13) 

 (1 )s r k
t t t t tc g c g c= + −e e . (14) 

And, in the sentence-level decoding step, s
tc  can be used. 

3.5.2 Word-level Decoding 
We use word-level attention on the word level. In each word generation step, our model can 
realize the summary sentence word by word by locating the relevant words in the source 
sentence. Firstly, we define ij

tme  as attention score of the hidden input state ijh  at decoding 
time step t: 
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 tanh( )ij T
tm b b ij b tm attne v W h U s b′= + + , (15) 

where tms  denotes the hidden state ( while generate m-th word in t-th summary sentence). 

 exp( )
exp( )

ij
tm

l

tm

tm

ij

il
e

e
β =

∑
. (16) 

Specially, ij
tmβ  denotes the contribution of the word ijw  in the source sentence is  in t-th 

decoder timestep.  
Since the above word-level attention exists in every source sentence, we normalize it to 

achieve a word-level global attention distribution as: 
 i i r

tm tm tiγ β α= . (17) 
Then the word-level context vector can be computed, as follows: 
 w ij

tm tm iji j
hγ=∑ ∑c . (18) 

Finally, using the global attention distribution w
tmc , we can calculate the probability 

distribution genP  for the final words, as follows: 

 ( ) softmax( ( [ , ] ) )w
gen tm tm tmP w W W s c b b′ ′ ′= + + , (19) 

where W ′ , W , b , b′  are learnable parameters. Furthermore, we also introduce the copy 
mechanism [13] in the model, which can copy words in the original input documents and solve 
the problem of out-of-vocabulary (OOV) words. 

3.6 Learning 
We first use the constructed ground-truth key sentences pre-training extractor by minimizing 

extL  in Eq. 3. Furthermore, we utilize the trained extractor as a plug-in of our model to extract 
key sentences for input documents. The final distribution is a weighted sum of the generation 
distribution. In training, the purpose of the model is to maximize the probability of generating 
a summary. So, we set the negative log-likelihood loss function as follows: 

 
)( ,

1( ) log ( | ; )
| | Tx y

p y xJ θ θ
∈

= − ∑Τ
, (20) 

where T denotes a set of document summary pairs and θ  is the model parameter. We use 
Adagrad [40] with learning rate 0.001 to optimize the model parameters θ . 

4. Experiments and Evaluation 

4.1 Dataset 
We utilize the CNN/Daily Mail dataset [13] and annotated English Gigaword dataset [41] to 
evaluate the effect of the model. These datasets have been widely used in abstractive 
summarization tasks. For the CNN/Daily Mail dataset, we keep the named entities in the text 
and operate directly on the original dataset. We think this is necessary, because a good 
summarization model needs to handle named entities when facing real-time tasks. During 
training and testing, we limit the input documents to 800 tokens. For summaries, the length is 
limited to 100 tokens during training and 120 during testing. The final dataset is a 
non-anonymized version. The statistics of the two datasets are presented in Table 1. 
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Table 1. The statistics of CNN/Daily Mail  and Gigaword datasets. 
Dataset Count AvgSourceLen AvgTargetLen 

CNN/Daily Mail 
Train 287,226 781 56 
Dev. 13,368 762 55 
Test 11,490 764 57 

Gigaword 
Train 3.8M 31.4 8.3 
Dev. 189K 31.7 8.3 
Test 1951 29.7 8.8 

 

4.2 Experimental Setup 
For all experiments, we set the size of the encoder and decoder hidden state to 256 in word 
level. For the encoder and decoder at the sentence level, we utilize 512-dimensional hidden 
states. The dimension of word embedding is 128. During the encoding and decoding process, 
we maintain a vocabulary of 50,000 words. In the test phase, when generating the summaries, 
we set the beam size to 4 and 8 in sentence level and word level, respectively. 

4.3 Comparative Methods 
We compare our model with some neural summarization approaches, including both 
abstractive models and extractive models. Among them, Lead-3 and SummaRuNNer are 
extractive models, and the rest is the abstractive model, as follows: 
 Lead-3 [26]. A widely used extractive baseline model, selecting the first three sentences 

from the original text as the summary. 
 SummaRuNNer [26]. An extractive summarization model based on RNN, converting 

the extractive summarization problem into a sequence classification problem: make a 
binary classification of each input sentence. 

 Point-Gen [13]. An extension of the seq2seq-baseline model that copies words from the 
original text through the pointer network, and penalizes the words in the input that were 
paid too much attention during the previous decoding, which solves the problem of 
sentence duplication. 

 GPG (Generalized Pointer Generator) [42]. A pointer generation model with stronger 
generalization ability. It enables the pointer network to “edit” its copied words rather than 
simply hard copying. 

 SAGCopy (Self-Attention Guided Copy Mechanism) [43]: A Transformer-based 
abstractive summarization model that utilizes the centrality of each source word to guide 
the copy process explicitly. 

 Hierarchical-baseline [25]. A basic hierarchical encoder-decoder model, which encodes 
the input documents at the sentence level and the word level and introduces an attention 
mechanism at the sentence level when decoding. 

 Hierarchical stru-Reg [1]. A hierarchical encoder-decoder model. It captures the 
structural features of the input documents by modelling the attention mechanism at the 
sentence level, thereby improving the informativity and readability of the summaries. 

4.4 Result 
We use the standard ROUGE metric to evaluate our model and report the F1 scores of 
ROUGE-1, ROUGE-2 and ROUGE-l with the Porter stemmer option. In order to show the 
advantages of our method more visually, we further count the duplicates in the generated 
summaries. We also randomly select 50 examples from CNN/Daily Mail dataset and use them 
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for human evaluation to ensure that our increase in ROUGE scores is also followed by an 
increase in human readability and quality. Finally, we conduct several ablation experiments to 
verify the effectiveness of key-sentences-guided selective encoding. 

4.4.1 ROUGE Metric 
Table 2 shows the rouge evaluation results. Among them, KI-HABS-Transformer indicates 
that the transformer is used as the encoder, and KI-HABS-GRU indicates that the GRU is used 
as the encoder. It can be seen from Table 2 that the KI-HABS-GRU model performs best 
compared with similar models, but it is not as good as the Transformer-based model 
SAGCopy. After replacing the encoder with Transformer, the performance of the model 
(KI-HABS-Transformer) has been improved, and the result is no weaker than SAGCopy, 
which proves the effectiveness and scalability of the key information-guided framework we 
proposed. Specifically, compared with the hierarchical baseline model, our method  KI-HABS 
significantly improves the ROUGE score. Moreover, the KI-HABS model is superior to the 
previous state-of-the-art hierarchical method Hierarchical Stru-Reg. The summary generated 
by our model contains almost all the significant information in the original text, which shows 
that key sentences in the document contain more core information. In particular, Lead-3 
performs well on the CNN/Daily Mail dataset, which to a certain extent shows that the 
sentence-level contains more document information in the multi-sentences summarization. 

Table 2. ROUGE for two datasets. Results with * mark are taken from the corresponding papers 

Method CNN/Daily Mail Gigaword 
R-1 R-2 R-L R-1 R-2 R-L 

                                              Extractive Results 
Lead-3 40.34 17.70 36.57 30.12 13.36 27.85 

SummaRuNNer* 39.6 16.2 35.3 - - - 
                                            Abstractive Results 

Point-Gen* 39.53 17.28 36.38 36.23 17.42 36.15 
Seq2seq-baseline* 36.64 15.66 33.42 34.04 15.95 31.68 

Hierarchical-baseline 34.95 14.79 32.68 31.11 13.97 28.33 
Hierarchical Stru-Reg* 40.30 18.02 37.36 - - - 

GPG* 40.95 18.01 37.46 37.23 19.02 34.66 
SAGCopy* 42.53 19.92 39.44 38.86 19.91 36.06 

KI-HABS-GRU 41.07 18.51 38.14 37.64 19.34 35.22 
KI-HABS-Transformer 42.14 19.72 40.58 38.62 20.16 35.98 

 

4.4.2 Duplicates Comparison 
Specially, in order to show the advantages of our method more visually, we further count the 
duplicates in the generated summaries. The results are shown in Fig. 4. From the figure, we 
can know that the summaries generated by our model contain less repetitions compared with 
the Seq2seq-baseline, Point-Gen, Hierarchical-baseline and GPG. Compared with 
Hierarchical Stru-Reg, our model also has a certain improvement. Therefore, our model not 
only digs into the salient information in the documents and reduces redundancy. 

The summaries generated by the Point-Gen, Seq2seq-baseline, GPG and 
Hierarchical-baseline model contain a lot of repeated sentences and phrases. The Point-Gen 
and GPG models even make fake facts. Compared with other models, our model generates 
more complete summaries with more salient information of input text, which shows that key 
sentences can provide more core information about the original text and guide the summary 
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generation process. 
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Fig. 4. Duplicates of different model 

4.4.3 Human Evaluation 
Furthermore, we randomly select 50 examples from CNN/Daily Mail dataset and use them for 
human evaluation to ensure that our increase in ROUGE scores is also followed by an increase 
in human readability and quality. The experiment is conducted under blackbox conditions, 
which means the human evaluator does not know which summaries come from which model 
or which one is the reference. All participants score from two aspects, readability (it measures 
whether the summary conforms to human language habits) and relevance (it measures whether 
the summary contains all the main information of the original text), 1 is the lowest score, and 5 
is the highest. 

The results are shown in Table 3. Our method with key-sentences guidance achieves 
higher scores than other abstractive methods except for the reference. 

Table 3. Human evaluation results 
Method Readability Relevance 

Point-Gen 2.96 3.12 
Seq2seq-baseline 2.33 2.56 
Hierarchical-baseline 3.04 3.33 
Hierarchical Stru-Reg 3.27 3.54 
GPG 3.11 3.43 
SAGCopy 3.75 4.11 
KI-HABS-GRU 3.57 3.98 
KI-HABS-Transformer 3.86 4.25 
Reference 4.58 4.79 

4.4.4 Ablation Experiments 
Finally, in order to verify the impact of key sentences on the model, we conduct several 
ablation experiments. After extracting the key sentences, we randomly select 1/4, 1/2, 2/3 and 
all the key sentences to guide the selective encoding. Specifically, based on the 
Hierarchical-baseline, we add different numbers of key sentences in turn: +1/4KS indicates 
adding a quarter of the key sentences, +1/2KS indicates adding one-half of the key sentences, 
+2/3KS indicates adding two thirds of the key sentences, +full-KS indicates adding all the key 
sentences. 
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Table 4. ROUGE for adding different number of key sentences 
Method Rouge-1  Rouge-2 Rouge--L 

Hierarchical-baseline 34.95 14.79 32.68 
+1/4-KS 36.67 15.98 34.16 
+1/2-KS 38.45 17.05 36.02 
+2/3-KS 39.21 17.48 37.51 

+full-KS (Our model) 41.07 18.51 38.34 
 

The results are shown in Table 4. Our method achieves higher scores than other compared 
models, which verifies the effectiveness of key-sentences-guided selective encoding. 
Moreover, as the proportion of key sentences increases, the generated summaries achieve 
higher ROUGE scores. Fig. 5 shows this effect more intuitively. Therefore, we can conclude 
that applying guidance signals of key sentences to the encoder based on the hierarchical 
encoder-decoder architecture have significant contributions to the summarization 
performance. 
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Fig. 5. Comparison of the impact of different proportions of key sentences on model performance. The 
subgraphs on the left show the ROUGE scores of the random samples from CNN/Daily Mail datasets. 
The subgraphs on the right describe the trend of the influence of different proportions of key sentences 
on the average rouge scores. 

5. Conclusion and Future Work 
In our paper, we focus on the abstractive document summarization model. We propose an 
abstractive document summarization method by applying guidance signals of key sentences to 
the encoder in our hierarchical encoder-decoder architecture. We use extractive methods to 
train a key sentences extractor, which can extract the salient sentences in the input document. 
Then, we apply key-sentences-guided selective encoding strategies to filter source information 
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between the input document and the key sentences. Our model digs into the salient 
information in the documents and uses them to guide the generation of summaries. To solve 
this problem, we conduct a lot of experiments. Comparison results of different models show 
that our model works best. 

In the next step of our work, we will try to explore more efficient sentence selection 
methods and extend our framework to pre-trained models. Moreover, more external 
information can be added at the sentence level to guide the summary generation, such as fact 
descriptions of the input document. 
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