• Title/Summary/Keyword: Electronic horizon

Search Result 25, Processing Time 0.025 seconds

3D Reconstruction of Urban Building using Laser range finder and CCD camera

  • Kim B. S.;Park Y. M.;Lee K. H.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.128-131
    • /
    • 2004
  • In this paper, we describe reconstructed 3D-urban modeling techniques for laser scanner and CCD camera system, which are loading on the vehicle. We use two laser scanners, the one is horizon scanner and the other is vertical scanner. Horizon scanner acquires the horizon data of building for localization. Vertical scan data are main information for constructing a building. We compared extraction of edge aerial image with laser scan data. This method is able to correct the cumulative error of self-localization. Then we remove obstacles of 3D-reconstructed building. Real-texture information that is acquired with CCD camera is mapped by 3D-depth information. 3D building of urban is reconstructed to 3D-virtual world. These techniques apply to city plan. 3D-environment game. movie background. unmanned-patrol etc.

  • PDF

Optimal Offer Strategies for Energy Storage System Integrated Wind Power Producers in the Day-Ahead Energy and Regulation Markets

  • Son, Seungwoo;Han, Sini;Roh, Jae Hyung;Lee, Duehee
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2236-2244
    • /
    • 2018
  • We make optimal consecutive offer curves for an energy storage system (ESS) integrated wind power producer (WPP) in the co-optimized day-ahead energy and regulation markets. We build the offer curves by solving multi-stage stochastic optimization (MSSO) problems based on the scenarios of pairs consisting of real-time price and wind power forecasts through the progressive hedging method (PHM). We also use the rolling horizon method (RHM) to build the consecutive offer curves for several hours in chronological order. We test the profitability of the offer curves by using the data sampled from the Iberian Peninsula. We show that the offer curves obtained by solving MSSO problems with the PHM and RHM have a higher profitability than offer curves obtained by solving deterministic problems.

Evaluation of Road and Traffic Information Use Efficiency on Changes in LDM-based Electronic Horizon through Microscopic Simulation Model (미시적 교통 시뮬레이션을 활용한 LDM 기반 도로·교통정보 활성화 구간 변화에 따른 정보 이용 효율성 평가)

  • Kim, Hoe Kyoung;Chung, Younshik;Park, Jaehyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.231-238
    • /
    • 2023
  • Since there is a limit to the physically visible horizon that sensors for autonomous driving can perceive, complementary utilization of digital map data such as a Local Dynamic Map (LDM) along the probable route of an Autonomous Vehicle (AV) is proposed for safe and efficient driving. Although the amount of digital map data may be insignificant compared to the amount of information collected from the sensors of an AV, efficient management of map data is inevitable for the efficient information processing of AVs. The objective of this study is to analyze the efficiency of information use and information processing time of AV according to the expansion of the active section of LDM-based static road and traffic information. To carry out this objective, a microscopic simulator model, VISSIM and VISSIM COM, was employed, and an area of about 9 km × 13 km was selected in the Busan Metropolitan Area, which includes heterogeneous traffic flows (i.e., uninterrupted and interrupted flows) as well as various road geometries. In addition, the LDM information used in AVs refers to the real high-definition map (HDM) built on the basis of ISO 22726-1. As a result of the analysis, as the electronic horizon area increases, while short links are intensively recognized on interrupted urban roads and the sum of link lengths increases as well, the number of recognized links is relatively small on uninterrupted traffic road but the sum of link lengths is large due to a small number of long links. Therefore, this study showed that an efficient range of electronic horizon for HDM data collection, processing, and management are set as 600 m on interrupted urban roads considering the 12 links corresponding to three downstream intersections and 700 m on uninterrupted traffic road associated with the 10 km sum of link lengths, respectively.

Input Constrained Receding Horizon Control with Nonzero Set Points and Model Uncertainties

  • Lee, Young-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.502-502
    • /
    • 2000
  • An input constrained receding horizon predictive control algorithm for uncertain systems with nonzero set points is proposed. For constant nonzero set points, models with uncertainty can be converted into an augmented incremental system through the use of integrators and the problem is transformed into a zero-state regulation problem for the incremental system. But the original constraints on inputs are converted into constraints on the sum of control inputs at each time Instants, which have not been dealt in earlier constrained robust receding horizon control problems. Recursive state bounding technique and worst case minimizing strategy developed in earlier works are applied to the augmented incremental system to yield an of set error free controller. The resulting algorithm is formulated so that it can be solved using LP.

  • PDF

Input Constrained Receding Horizon $H_{\infty}$ Control : Quadratic Programming Approach

  • Lee, Young-Il
    • 전기의세계
    • /
    • v.49 no.9
    • /
    • pp.9-16
    • /
    • 2000
  • A receding horizon $H_{\infty}$ predictive control method is derived by solving a min-max problem in non-recursive forms. The min-max cost index is converted to a quadratic form which for systems with input saturation can be minimized using QP. Through the use of closed-loop prediction the prediction of states the use of closed-loop prediction the prediction of states in the presence of disturbances are made non-conservative and it become possible to get a tighter $H_{\infty}$ norm bound. Stability conditions and $H_{\infty}$ norm bounds on disturbance rejection are obtained in infinite horizon sence. Polyhedral types of feasible sets for sets and disturbances are adopted to deal with the input constraints. The weight selection procedures are given in terms of LMIs and the algorithm is formulated so that it can be solved via QP. This work is a modified version of an earlier work which was based on ellipsoidal type feasible sets[15].

  • PDF

Image-Based Maritime Obstacle Detection Using Global Sparsity Potentials

  • Mou, Xiaozheng;Wang, Han
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.2
    • /
    • pp.129-135
    • /
    • 2016
  • In this paper, we present a novel algorithm for image-based maritime obstacle detection using global sparsity potentials (GSPs), in which "global" refers to the entire sea area. The horizon line is detected first to segment the sea area as the region of interest (ROI). Considering the geometric relationship between the camera and the sea surface, variable-size image windows are adopted to sample patches in the ROI. Then, each patch is represented by its texture feature, and its average distance to all the other patches is taken as the value of its GSP. Thereafter, patches with a smaller GSP are clustered as the sea surface, and patches with a higher GSP are taken as the obstacle candidates. Finally, the candidates far from the mean feature of the sea surface are selected and aggregated as the obstacles. Experimental results verify that the proposed approach is highly accurate as compared to other methods, such as the traditional feature space reclustering method and a state-of-the-art saliency detection method.

NMPC-based Obstacle Avoidance and Whole-body Motion Planning for Mobile Manipulator (모바일 매니퓰레이터의 NMPC 기반 장애물 회피 및 전신 모션 플래닝)

  • Kim, Sunhong;Sathya, Ajay;Swevers, Jan;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.359-364
    • /
    • 2022
  • This study presents a nonlinear model predictive control (NMPC)-based obstacle avoidance and whole-body motion planning method for the mobile manipulators. For the whole-body motion control, the mobile manipulator with an omnidirectional mobile base was modeled as a nine degrees-of-freedom (DoFs) serial open chain with the PPR (base) plus 6R (arm) joints, and a swept sphere volume (SSV) was applied to define a convex hull for collision avoidance. The proposed receding horizon control scheme can generate a trajectory to track the end-effector pose while avoiding the self-collision and obstacle in the task space. The proposed method could be calculated using an interior-point (IP) method solver with 100[ms] sampling time and ten samples of horizon size, and the validation of the method was conducted in the environment of Pybullet simulation.

Application of Opposition-based Differential Evolution Algorithm to Generation Expansion Planning Problem

  • Karthikeyan, K.;Kannan, S.;Baskar, S.;Thangaraj, C.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.686-693
    • /
    • 2013
  • Generation Expansion Planning (GEP) is one of the most important decision-making activities in electric utilities. Least-cost GEP is to determine the minimum-cost capacity addition plan (i.e., the type and number of candidate plants) that meets forecasted demand within a pre specified reliability criterion over a planning horizon. In this paper, Differential Evolution (DE), and Opposition-based Differential Evolution (ODE) algorithms have been applied to the GEP problem. The original GEP problem has been modified by incorporating Virtual Mapping Procedure (VMP). The GEP problem of a synthetic test systems for 6-year, 14-year and 24-year planning horizons having five types of candidate units have been considered. The results have been compared with Dynamic Programming (DP) method. The ODE performs well and converges faster than DE.

Robust Model Predictive Control Using Polytopic Description of Input Constraints

  • Lee, Sang-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.566-569
    • /
    • 2009
  • In this paper, we propose a less conservative a linear matrix inequality (LMI) condition for the constrained robust model predictive control of systems with input constraints and polytopic uncertainty. Systems with input constraints are represented as perturbed systems with sector bounded conditions. For the infinite horizon control, closed-loop stability conditions are obtained by using a parameter dependent Lyapunov function. The effectiveness of the proposed method is shown by an example.

Real-time Optimal Operation Planning of Isolated Microgrid Considering SOC balance of ESS

  • Lee, Yoon Cheol;Shim, Ji Yeon;Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.10
    • /
    • pp.57-63
    • /
    • 2018
  • The operating system for an isolated microgrid, which is completely disconnected from the central power system, aims at preventing blackouts and minimizing power generation costs of diesel generators through efficient operation of the energy storage system (ESS) that stores energy produced by renewable energy generators and diesel generators. In this paper, we predict the amount of renewable energy generation using the weather forecast and build an optimal diesel power generation plan using a genetic algorithm. In order to avoid inefficiency due to inaccurate prediction of renewable energy generation, our search algorithm imposes penalty on candidate diesel power generation plans that fail to maintain the SOC (state of charge) of ESS at an appropriate level. Simulation experiments show that our optimization method for maintaining an appropriate SOC balance can prevent the blackout better when compared with the previous method.