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I. INTRODUCTION 
 

Obstacles in a maritime scenario can be big cargo ships, 

vessels, yachts, and/or small buoys. Successful detection of 

these obstacles provides important information for either 

navigation or object detection and the tracking of unmanned 

surface vehicles (USVs) [1-3]. The methods for obstacle 

detection in maritime images can be roughly categorized 

into two-dimensional (2D) image-based and three-dimensional 

(3D) stereo vision-based methods. The 3D methods [4, 5] 

use two stereo images to obtain a 3D point cloud of the 

scene, which is then applied to fit the sea surface plane and 

cluster the points above this plane as obstacles. The 2D 

methods can either use graphic models to separate the sky, 

horizon, and sea areas and then segment the obstacles from 

the sea area [6], or apply saliency detection to estimate the 

obstacles [7]. In this work, we use a 2D image-based 

method because of the low camera budget and the relatively 

small computational burden. 

Sparsity potential (SP), originally proposed in [8] for 

object detection, is a measure that captures the sparseness or 

similarity of an image patch with respect to its neigh-

borhood. In [8], image patches with a high value of SP are 

considered to be more discriminative and chosen for 

training and testing with Hough Forests. However, there are 

some limitations of applying such a local SP to maritime 

images because of the unique properties of a sea surface. 

For example, the neighboring patches of an image patch of 

the top of a sea wave may contain the bottom of the sea 

wave; thus, the image patch in the center would be highly 

distinct from its neighbors and have a low self-similarity or 

SP value, which would lead to a high probability of being  
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Abstract 

In this paper, we present a novel algorithm for image-based maritime obstacle detection using global sparsity potentials 

(GSPs), in which “global” refers to the entire sea area. The horizon line is detected first to segment the sea area as the region 

of interest (ROI). Considering the geometric relationship between the camera and the sea surface, variable-size image 

windows are adopted to sample patches in the ROI. Then, each patch is represented by its texture feature, and its average 

distance to all the other patches is taken as the value of its GSP. Thereafter, patches with a smaller GSP are clustered as the sea 

surface, and patches with a higher GSP are taken as the obstacle candidates. Finally, the candidates far from the mean feature 

of the sea surface are selected and aggregated as the obstacles. Experimental results verify that the proposed approach is 

highly accurate as compared to other methods, such as the traditional feature space reclustering method and a state-of-the-art 

saliency detection method. 
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Fig. 1. Each image patch exhibits a different global sparsity potential. The 

top image shows two image patches from the sea surface (green) and the 
obstacle (red), After they go through the entire patch set (middle image) 
for similarity searching, patches similar to them can be retrieved as shown 
in the two bottom images.  

 

 

classified as a patch of obstacles. In contrast, if the image 

patch is sampled from a big cargo ship, it may have a very 

similar appearance to its neighboring patches; this may lead 

to a high SP value, and the image patch may be wrongly 

classified as the background. Therefore, to reduce the 

abovementioned detection error in maritime images, we 

propose “global sparsity potential (GSP)”, which computes 

the self-similarity of an image patch within the entire sea 

surface area. By taking into account the entire sea surface 

area, we find that the image patch on the sea has more 

similar patches in the entire set of patches, while the image 

patch on the obstacles has the opposite. Thereafter, the 

discriminative power of image patches increases, and it 

becomes easier to separate the foreground (obstacles) 

patches from the background (sea) ones. As illustrated in 

Fig. 1, one can see that compared to the patch of obstacles, 

which only has three similar patches in the patch set, the 

patch of the sea is considerably less sparse and more similar 

to most of the patches.  

In [9], the researchers proposed the use of variable-size 

image windows and feature space reclustering for detecting 

obstacles in maritime images. In their work, an iterative 

reclustering method is proposed to determine the centroid of 

the main cluster (sea), whose outliers are considered obstacles. 

Nevertheless, the clustering process in this method is 

sensitive to the outliers in the computation of the mean or 

the median of the feature set, thus leading to poor perfor-

mance when there are a larger number of obstacles or more 

white wake outliers in the image. To solve this problem, in 

this study, we omitted the reclustering process and used GSP 

for estimating the mean feature of the sea. Then, as in [9], 

the outliers were considered obstacles. 

In summary, two contributions are made in this paper. 

One is that we introduce a new measure, GSP, to represent 

the sparseness of an image patch with respect to the entire 

sea surface area. The other is a novel image-based obstacle 

detection algorithm using GSP for USVs; this algorithm has 

been experimentally proven to be more accurate and robust 

than the traditional method [9] and the state-of-the-art 

saliency detection method [10]. 

The rest of this paper is organized as follows: Section II 

introduces the proposed GSP measure and the proposed 

algorithm for obstacle detection in maritime images. Section 

III presents the experimental results with our own dataset 

and a comparison with other related work. Finally, Section 

IV concludes this work and discusses the future work in this 

area of study.   

 

 

II. PROPOSED ALGORITHM 
 

To ensure that only the sea surface area is processed and 

the sea surface is the dominating cluster, the proposed 

algorithm for maritime obstacle detection is based on two 

assumptions: 

 The horizon can be detected in the images. 

 Obstacles form a small part (<50%) of the sea area in the 

images. 

Therefore, only the obstacles below the horizon line in 

the images are considered the detection targets. In general, 

the proposed algorithm can be divided into three procedures: 

horizon detection, sampling and representation of image 

patches, and obstacle detection using GSP.   

 

A. Horizon Detection 
 

In [11], four different horizon detection methods were 

compared and analyzed, and it was concluded that the 

Random Sample Consensus (RANSAC) method provides 

the best results with high accuracy. Therefore, in this work, 

we apply the RANSAC method for horizon detection. To 

reduce the computational expense and the noise effect, it is 

usually better to set a region of interest (ROI) that contains 

the horizon. However, rather than predefine a fixed ROI for 

every frame as in [11], we propose a more general method 

to adaptively estimate the ROI.  

 

 

 

Fig. 2. ROI (area between the two blue lines) estimation for horizon 

detection. For visual purposes, the size ratio between the small size 
gradient map and the original image is enlarged.   
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Fig. 3. ROI for obstacle detection. Affine transformation is applied on the 

left image to horizontalize the horizon line (red), and then, a rectangle 
area without artificial pixels is cropped as the ROI (white rectangular area 
in the right image). 

 

 

We first resize the original image to a smaller size (e.g., 

64×64 in this work), because downsampling eliminates a 

considerable amount of noise, and the horizon can still be 

roughly estimated without significantly biasing the ground 

truth. In the downsized image, shown in Fig. 2, first, the 

gradient map is computed using a Sobel operator, and then, 

locations with the maximum gradient values along each 

sampled column are selected as the candidate points; 

RANSAC is used by randomly selecting two candidate 

points at each iteration to fit the horizon line. Finally, after 

reprojecting the estimated horizon in the small image onto 

the original image, we can define the ROI in the original 

image by moving the horizon vertically up and down for the 

same distance to form the upper and lower boundaries, 

respectively. Thereafter, RANSAC is used again as in [11] 

in the ROI for estimating a more accurate horizon in the 

original image.         

  As shown in Fig. 3, after the detection of the horizon line, 

the ROI for obstacle detection can be obtained via affine 

transformation and cropping. Then, further processing is 

performed on the ROI.  

 

B. Patch Sampling and Representation 
 

In 2D images, considering the geometric relation between 

the camera and the sea surface, the resolution of the 

observation that is close to the horizon is smaller than that 

of the observation close to the image bottom. Similar to [9], 

here, square image patches are sampled from the ROI by 

using variable-size image windows with an overlap rate of 

𝛼 and an expansion rate of 𝛽; the minimum window size is 

𝜔 × 𝜔 pixels. An example of this image patch sampling 

method can be seen in the middle image of Fig. 1, in which 

the white rectangles denote the sample patches from the 

whole image.  

To represent the abovementioned sample patches, we 

adopt a gray-level co-occurrence matrix-based texture 

analysis [12] as in [9]. In this method, all patches are first 

resized to the same size (𝜔 × 𝜔) and then, each image patch 

f is represented by a four-dimensional vector: f = [Energy, 

Entropy, Contrast, Homogeneity]. Here, 

𝐸𝑛𝑒𝑟𝑔𝑦 =  ∑ ∑ 𝐼2(𝑖, 𝑗)𝑗𝑖  ,            (1) 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  ∑ ∑ 𝐼(𝑖, 𝑗) log(𝐼(𝑖, 𝑗) +  1)𝑗𝑖  ,     (2) 

 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  ∑ ∑ (𝑖 − 𝑗)2𝐼(𝑖, 𝑗)𝑗𝑖 ,         (3)  

 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =  ∑ ∑ 𝐼(𝑖, 𝑗) / (1 + |𝑖 − 𝑗|)𝑗𝑖 ,   (4) 

 

where 𝑖 and 𝑗 denote the row and column indices of the 

image patch, respectively, and 𝐼(𝑖, 𝑗)  represents the 

intensity value at pixel location (𝑖, 𝑗).  

 

C. Obstacle Detection Using GSP 
 

Here, we denote an image patch with a feature vector 

expression as 𝑓𝑘 , and the entire image patch set as 

𝑭 =  {𝑓𝑘 , 𝑘 = 1, 2, … , 𝑁} , where 𝑁  represents the total 

number of patches sampled in the ROI of an image. 

        

1) Measure of GSP 

In this work, the GSP of an image patch is measured by 

its global self-similarity, which computes the similarity of a 

query patch to the entire patch set. Different from [13], 

which extracts the global self-similarity descriptors by 

performing a cross correlation of the patches in the entire 

image for object classification and detection, we measure 

the texture similarity of a query patch to the entire patch set 

by respectively computing their Mahalanobis distances. The 

smaller the distance between two patches, the higher is the 

similarity between them. Then, all the computed distances to 

the patch set are summed and their average is taken as the 

global self-similarity measure of this query patch. Eq. (5) 

formulates the global self-similarity 𝐺𝑘 of patch 𝑓𝑘 in an 

image. 
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where 𝐶 denotes the covariance matrix of the feature set. 

Then, 𝐺𝑘 is normalized to be in [0, 1] with 0 representing 

the most similar and 1 the most dissimilar. 

 

2) Clustering of Features  

In [9], the centroid of the main cluster (sea) is estimated 

using an iterative procedure. However, this method may be 

sensitive to the outliers, because at each iteration, it treats all 

image patches equally in order to compute the mean or 

median feature. Therefore, including these outliers in the 

estimation of the centroid of the sea may decrease the 

accuracy. In this work, to overcome the abovementioned 

drawback, we propose to select image patches with a high 

probability to be a sea surface, i.e., having a relatively low 

GSP value, to estimate the centroid (mean feature) of the sea. 
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Thereafter, the procedure for feature clustering can be 

summarized as follows: 

1. Image patches with GSP 𝐺𝑘 ≤ 𝜏1 ( 𝜏1  denotes the 

threshold) are selected to compute the mean feature 𝜇 of 

the sea. 

2. The Mahalanobis distance 𝑑𝑟  between image patches 

with GSP 𝐺𝑘 > 𝜏1  and 𝜇  are calculated respectively, 

and patches with 𝑑𝑟 > 𝜏2 (𝜏2 denotes the threshold) are 

considered to the patches of obstacles. 

3. All the detected obstacle patches are grouped and merged 

to form the obstacle boundaries, and then, an inverse 

affine transform with respect to the horizon line is applied 

to map the location of the detected obstacles in the 

original image. 
 

 

III. EXPERIMENTAL RESULTS 
 

Since there are few available public datasets for maritime 

obstacle detection, we built our own dataset, the details of 

which are described in Section III-A. Using this new dataset, 

we evaluated the accuracy of the proposed algorithm and 

compared its performance with that of the traditional 

method [9] and that of a state-of-the-art saliency detection 

approach [10] in Section III-B. 

 

A. Dataset 

Our maritime obstacle detection dataset consists of four 

sequences (S_#1, S_#2, S_#3, and S_#4), which were 

captured by a Point Grey grasshopper CCD camera mounted 

on a moving USV on the sea. Each sequence contains 600 

RGB frames (size: 684×548 pixels). The obstacle in this 

dataset is a moving target boat, which varies its distance 

(approximately from 50 m to 500 m) to the USV (camera 

boat). The different sequences present different challenges: 

S_#1 characterizes the detection ability for a short 

distance, in which the target boat moves close to the USV 

(within 100 m); 

S_#2 contains many white wake outliers generated by the 

fast moving target boat, and the distance is around 100 m to 

200 m. 

S_#3 has a majority of the frames without the obstacle 

shown, and the target boat quickly moves 200 m away 

from the USV, and from the left to the right of the image in 

a few frames at the middle of the sequence; this also 

provides some white wake outliers. 

S_#4 renders the challenge of distant obstacle detection, 

and the target boat moves a distance of 200 m to 500 m 

away.   

 

B. Performance Evaluation 

Since the proposed algorithm is based on the prior 

knowledge of the horizon line, only images whose horizons 

are detected can be processed for the obstacle detection. 

Thus, images without a detected horizon are discarded, and 

not considered in the accuracy or the false rate calculation 

of the obstacle detection.  

The parameters for variable-size windows in the image 

patch sampling part are set as follows: overlap rate 𝛼 = 33% 

expansion rate 𝛽 = 6%, and the minimum window size is 

16×16. In Section II-C-2), the thresholds 𝜏1 and 𝜏2 are set 

to 0.1 and 0.9, respectively.    

Similar to [14], the accuracy evaluation is performed 

visually as follows:  

1. For frames with an obstacle presented, the detection result 

for each frame is classified as the detected bounding box 

𝑏  being either 𝑐𝑜𝑟𝑟𝑒𝑐𝑡  (most part of 𝑏  contains the 

obstacle), ℎ𝑎𝑙𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡  (about half part of 𝑏 contains 

the obstacle), or 𝑓𝑎𝑙𝑠𝑒  (very small or no part of 𝑏 

contains the obstacle). Accordingly, the assigned numeric 

value 𝜌(𝑏) is 1, 0.5, or -1, respectively. 

2. For frames without the obstacle shown, the detected 

bounding box 𝑏 is classified as either 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 (𝑏 is not 

detected in the result, i.e., void detection) or 𝑓𝑎𝑙𝑠𝑒 (𝑏 is 

detected in the result, i.e., false detection). Accordingly, 

the assigned numeric value 𝜌(𝑏) is 1 or -1, respectively. 

 

Integrating the two above-discussed cases, we can 

express the score assigned to 𝑏 as follows:   
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Finally, as formulated in (7), the detection accuracy   

and the false detection rate 𝜂 can be calculated using all 

assigned values 𝜌(𝑏) in each sequence.  
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where 𝑛+ denotes the sum of the total number of ground-

truth obstacles and the total number of frames without an 

obstacle in each sequence, and 𝑛−  represents the total 

number of frames in each sequence.  

Table 1 summarizes the performance of obstacle detection 

using the proposed algorithm and two comparative algo-

rithms. 

 

C. Comparisons and Analysis 

The main difference between the proposed algorithm and 

the feature space reclustering method [9] is the computation 
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of the centroid of the sea features. In [9], the authors 

proposed the use of all the features of the sampled image 

patches to estimate the centroid iteratively, while our 

method involves the selection of image patches with small 

values of GSP and the calculation of their mean to estimate 

the centroid. Theoretically, the proposed algorithm is more 

insensitive to the outliers of the sea features, because rather 

than taking all the features, which may contain many 

outliers, to compute the mean or median feature, we just use 

features with high probabilities to be the sea to compute the 

mean feature. We reimplemented the method of [9] with the 

same parameter settings for variable-size window sampling 

and feature extraction on our maritime obstacle detection 

dataset. Experimental results show that the proposed 

algorithm is more accurate than that proposed in [9].  

As shown in Table 1, the accuracy of the proposed 

algorithm is more than 10% compared to that proposed in [9] 

in the first three sequences, which contain many outliers 

caused by the white wake. Nevertheless, in sequence S_#4, 

our method performs only slightly better than that proposed 

in [9]. This could be attributed to the fact that the obstacles 

in most frames of S_#4 are far away from the camera, so 

there are very few outliers, such as white wake, in the 

images. Fewer outliers lead to more accurate estimation of 

the centroid of the sea; thus, only a small accuracy gap 

exists between our method and that proposed in [9]. In 

Table 1. Comparison of accuracy (Acc) and false rate (FR) for maritime 

obstacle detection using different methods 

Seq. 
[10] [9] Proposed algo. 

Acc FR Acc FR Acc FR 

S_#1 0.662 0.214 0.782 0.216 0.893 0.132 

S_#2 0.056 0.933 0.652 0.381 0.842 0.230 

S_#3 0.827 0.149 0.814 0.195 0.917 0.124 

S_#4 0.053 0.925 0.927 0.151 0.965 0.058 

Avg. 0.400 0.555 0.794 0.236 0.904 0.136 

 

 

addition, our method exhibits a smaller false detecting rate 

than that proposed in [9]. 

Some advantages of the proposed algorithm over the 

method proposed in [9] can be seen in Fig. 4. In Fig. 4(a) 

and (c), false detection caused by white wake happens in the 

case of the method proposed in [9]. In Fig. 4(f), the method 

proposed in [9] has two detections, in which one is correct 

and the other is false and is caused by a sea wave; the same 

false detection is also observed in the scenario of Fig. 4(d). 

Only a small portion of the boat is detected by the method 

proposed in [9] in Fig. 4(e), and this situation is classified as 

𝑓𝑎𝑙𝑠𝑒 in Eq. (6). Fig. 4(b) shows the missed detection for 

the method proposed in [9], which wrongly detects nothing 

for this frame.     

 

 

Fig. 4. Superior performance for maritime obstacle detection of the proposed algorithm (red) compared to that of the method of feature space reclustering 

[9] (green) and that of saliency detection VOCUS2 [10]. The yellow bounding box in (f) means that the red and the green bounding boxes are overlaid. (a) 
and (b) are from S_#1; (c) is from S_#2; (d) and (e) are from S_#3; and (f) is from S_#4. One can see that the performances of these three methods can be 
easily evaluated by human eyes. 

 

(a) (b) (c) 

(d) (e) (f) 
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To test the saliency detection method for our task, we 

implemented the work of [10] with our own dataset. As 

shown in Table 1, however, this state-of-the-art method for 

saliency detection does not perform well for our dataset. 

However, intuitively, it seems that the obstacles on the sea 

are more distinct and salient than the sea water. In fact, the 

saliency-based methods, which usually use the image local 

contrast information to detect distinct regions, are sensitive 

to the sea wave. For example, it can be seen in Fig. 4(a), (b), 

(c), and (f) that the white wake generated by the boat causes 

a big problem for this saliency detection method, which 

results in many false detections. Similarly, in Fig. 4(d), the 

dark region between the wave top and the wave bottom is 

detected as the saliency, but this region is not an obstacle. 

Although the detected saliency in Fig. 4(e) contains the 

obstacle, the bounding box is very big and is not well-fitted 

to the obstacle. Therefore, we can conclude that it may not 

be a wise choice to only apply saliency detection to solve 

the maritime obstacle detection task. 

 

 

IV. CONCLUSION 
 

In this paper, we introduced a new measure, “global 

sparsity potential (GSP)”, to capture the sparseness of an 

image patch throughout the sea area. Using GSP, we 

developed an accurate and robust approach for moving 

camera-based obstacle detection in maritime images. In 

this approach, image patches with a relatively small GSP 

value are considered the main cluster (i.e., sea surface), 

while their outliers, which have a relatively large GSP 

value and a relatively large Mahalanobis distance with 

respect to the mean feature of the sea surface), are 

considered the obstacles. 

Although the proposed algorithm exhibits good per-

formance, only the intensity image and the texture feature 

are explored. Further improvements can be expected by 

combining the color information and other discriminative 

features in a future work.      
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