• Title/Summary/Keyword: Electronic field Strength

Search Result 189, Processing Time 0.025 seconds

Effects of Curing Agent Content and Post-curing Conditions on Dielectric Deterioration Characteristics of DGEBA/MDA/SN System (경화제 함량과 후기경화조건에 따른 DGEBA/MDA/SN계의 절연열화 특성)

  • 조영신;박수길;임기조;심미자;김상욱
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.313-316
    • /
    • 1997
  • The effects of aromatic curing agent of MDA contents and post curing conditions on dielectric deterioration characteristics of DGEBA/MDA/SN system were investigated. The dielectric properties were measured by using needle-plane electrode geometry under the commercial AC high electric field application. As the curing agent content increased, the dielectric breakdown strength increased and then decreased slightly. All the trees initiated from the tip of needle electrode and the shape of the tree in this system was a dendrite type.

  • PDF

A study of the Insulation Characteristic in $SF_{6}$-$N_2$ Mixture Gases ($SF_{6}$-$N_2$ 혼합기체의 절연특성에 관한 연구)

  • 하성철;송병두
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.613-616
    • /
    • 2001
  • This $SF_{6}$ gas is widely used in industrial of insulation field. In this paper, $N_2$ is mixed to improve pure $SF_{6}$ gas characteristics. Electron transport coefficients in $SF_{6}$-$N_2$ mixture gases are simulated in range of E/N values from 70 to 400 [Td] at 300K and 1 Torr by using Boltzmann equation method. The results of this method, which are like electron drift velocity, ionization coefficient, attachment coefficient, effective ionization coefficient, and critical E/N, can be important data to present characteristic of gas for insulation. Specially critical E/N is a data to evaluate insulation strength of a gas and is presented in this paper for various mixture ratios of $SF_{6}$-$N_2$ mixture gases.

  • PDF

Effects of Mm(misch metal) Addition on The Property of Ag-CdO alloys for Electrical Contactor (전기접점용 Ag-CdO합금의 물성에 미치는 Mm(misch metal) 첨가의 영향)

  • Park, Su-Dong;Lee, Hee-Woong;Kim, Bong-Seo;Kim, Byung-Geol;Song, Jae-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.34-37
    • /
    • 2004
  • It is well known that Ag-CdO alloy for electrical contactor has been widely used in weak or middle electric current field. But it is necessary to decrease Cd contents without decrease of contactor property because Cd is harmful to human body. The present work has been carried out to investigate effects of Mm (misch metal) addition on the property of Ag-CdO alloy for electrical contactor. As the results of present works, hardness and strength was improved and arc resistance was improved, also, in spite of decrease Cd contents by the Mm addition. It was estimated that Ag-oxide particle was refined by Mm addition.

  • PDF

Development of Ultra Thin Notebook Case Usins Mg Alloy Sheet (초박판 마그네슘 노트북 케이스 개발)

  • Lee, K.T.;Beak, H.J.;Hwang, S.H.;Choi, C.S.;Kim, H.J.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.383-386
    • /
    • 2008
  • Magnesium alloy sheets have been extending their field of applications to automotive and electronic industries taking advantage of their excellent light weight property. In addition to their excellent light property, magnesium alloys have several other advantages: high specific strength, good welding capability and corrosion resistance. Taking advantage of these benefits, magnesium alloys have also been substituting the polymeric materials in the electronic devices industries. In sheet metal forming application with magnesium alloys, the lower formability and high springback due to the lower elastic property (Young's modulus=45 GPa) at room temperature are major hurdles by which magnesium alloys have limited applications. In this study, commercial notebook case was adopted as the benchmark model, and then design parameters and process conditions are analyzed by the finite element simulation and physical try-outs.

  • PDF

Correction Measures That Take Humidity into Account in Insulating Oil Test Measurement Results (습도를 고려한 절연유 시험 결과의 보정 방안 연구)

  • Wansu Kim;Jae-pil Roh;Seock-gu Kang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.5
    • /
    • pp.541-546
    • /
    • 2024
  • Climate conditions, especially transport and storage, are a very important factor in the process of sampling and testing insulation oil in the field. The samples of insulating oil exposed to the atmosphere affect the dielectric strength, total acid number and moisture test value by oxygen and high humidity environment and may also affect the results according to the criteria specified in each test. Therefore, reliable test values for insulating oil testing require consideration of the atmospheric environment of the test site, including oxygen and humidity. In this paper, each test was conducted on insulating oil exposed to various time and humidity environments, and the effect of the atmospheric environment on the test results was analyzed by comparing and analyzing with the first insulating oil.

Design of a Broadband Window Antenna Using a Parallel T-Matching Network (병렬 T-정합 회로를 이용한 차량 유리 부착형 광대역 안테나 설계)

  • Kim, Yoon-Geon;Kay, Young-Chul;Ji, Sung-Hwan;Choo, Ho-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.122-130
    • /
    • 2012
  • In this paper, we propose a broadband vehicle antenna that can operate at the WiBro band(2.3~2.4 GHz) for a wireless internet service. The feeding of the proposed antenna consists of two T-matching networks on both side of the polyarcylate substrate, and the two T-matching networks are connected through via holes. The designed antenna was built and installed on a rear window of a commercial sedan, and the antenna performances, such as the reflection coefficients and the radiation gain are measured in the open-sight area. The received signal strength of the designed antenna was also tested in a strong field area as well as in a weak field area. The measurement results show the matching bandwidth($S_{11}$ <10 dB) of about 300 MHz in the WiBro band and the average gain of about -5.13 dBi along the azimuth direction.

Stick-slip Characteristics of Magnetorheological Elastomer under Magnetic Fields (자기장에 따른 자기유변탄성체의 스틱 슬립 현상 연구)

  • Lian, Chenglong;Lee, Kwang-Hee;Kim, Cheol-Hyun;Lee, Chul-Hee;Choi, Jong Myoung
    • Tribology and Lubricants
    • /
    • v.31 no.1
    • /
    • pp.6-12
    • /
    • 2015
  • This paper investigates the stick-slip characteristic of magnetorheological elastomer (MRE) between an aluminum plate and the surface of the MRE. MRE is a smart material and it can change its mechanical behavior with the interior iron particles under the influence of an applied magnetic field. Stick-slip is a movement of two surfaces relative to each other that proceeds as a series of jerks caused by alternate sticking from friction and sliding when the friction is overcome by an applied force. This special tribology phenomenon can lead to unnecessary wear, vibration, noise, and reduced service life of work piece. The stick-slip phenomenon is avoided as far as possible in the field of mechanical engineering. As this phenomenon is a function of material property, applied load, and velocity, it can be controlled using the characteristics of MRE. MRE as a soft smart material, whose mechanical properties such as modulus and stiffness can be changed via the strength of an external magnetic field, has been widely studied as a prospective replacement for general rubber in the mechanical domain. In this study, friction force is measured under different loads, speed, and magnetic field strength. From the test results, it is confirmed that the stick-slip phenomenon can be minimized under optimum conditions and can be applied in various mechanical components.

A Study on the Technical Regulation of Weak Electric Filed Strength Radio Equipment about 58kHz Frequency Band (58kHz 대역 미약 전계강도 무선기기 기술 기준에 관한 연구)

  • Park, Hyoung-Keun;Kim, Sun-Youb;Ra, Yoo-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2319-2325
    • /
    • 2009
  • This paper compared the output limits value of the Korean weak electric field strength wireless device in the 58kHz band with the standard values of foreign countries. Through this, the study confirmed that the Korean regulation was lower by about 50dB than those of the USA or Europe. In order to prove this, the study measured outputs by entrusting the 58kHz EAS system to two measuring companies. As a result of these measurements, electric field strengths were shown to be $112dB{\mu}V/m$ and $08dB{\mu}V/m$ respectively, and these values were confirmed to exceed the current Korean standard of $102.7dB{\mu}V/m$. Accordingly, it is deemed necessary to review the specifications of the Korean standard in the 58kHz band.

A Study on the Insulation Characteristics of Epoxy Composites Using Electric Field Simulation

  • Lee, Deok-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.2
    • /
    • pp.53-60
    • /
    • 2021
  • In this paper, we aimed to identify the insulation characteristics and reliability of Epoxy composites, which are widely used as insulation material for electrical & electronic components and electric appliance. To this end, it was necessary to predict variations of electric field due to the distribution of fillers that must be added by economic and mechanical factors. So, we verified the result using an electric field analysis Simulator. Furthermore, under the condtion of DC voltage application, an dielectirc breakdown test was performed according to ambient temperature changes and the distribution of fillers, and the changes were observed. Three types of specimens were manufactured by adding 0, 50 and 100[phr] filling to Epoxy resin. In all specimens, as temperature was increased, the strength of the dielectric strength was decreased. When comparing the simulation results with the actual dielectric breakdown test results, we was able to confirm the technical applicability required for Insulation design of electric appliance.

Effect of process pressure on properties of carbon nanotubes prepared by MPECVD (마이크로웨이브를 이용한 탄소나노튜브의 성장시 플라즈마 압력의 효과)

  • Choi, Sung-Hun;Lee, Jae-Hyeong;Yang, Jong-Seok;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.73-74
    • /
    • 2006
  • Carbon nanotubes (CNTs) have recently attracted great attention because of their excellent physical properties, such as high mechanical strength, thermal stability, and electronic properties. These useful properties of carbon nanotubes make themselves good candidates for various application field, such as a transistor, battery, field emission display, nanoscale inter-connects, and so on. Gas-phase techniques offer the unique ability to synthesize well-oriented arrays of CNTs. However, it is seldom reported that the pressure influences on the growth of CNTs under low substrate temperature. In this work, the effect of the working pressure and the influence of the catalyst preparation on the properties of CNTs grown by microwave plasma chemical vapor deposition (MPCVD) were investigated.

  • PDF