• Title/Summary/Keyword: Electronic devices

Search Result 4,580, Processing Time 0.032 seconds

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF

Performance Estimation of Large-scale High-sensitive Compton Camera for Pyroprocessing Facility Monitoring (파이로 공정 모니터링용 대면적 고효율 콤프턴 카메라 성능 예측)

  • Kim, Young-Su;Park, Jin Hyung;Cho, Hwa Youn;Kim, Jae Hyeon;Kwon, Heungrok;Seo, Hee;Park, Se-Hwan;Kim, Chan Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Compton cameras overcome several limitations of conventional mechanical collimation based gamma imaging devices, such as pin-hole imaging devices, due to its electronic collimation based on coincidence logic. Especially large-scale Compton camera has wide field of view and high imaging sensitivity. Those merits suggest that a large-scale Compton camera might be applicable to monitoring nuclear materials in large facilities without necessity of portability. To that end, our research group have made an effort to design a large-scale Compton camera for safeguard application. Energy resolution or position resolution of large-area detectors vary with configuration style of the detectors. Those performances directly affect the image quality of the large-scale Compton camera. In the present study, a series of Geant4 Monte Carlo simulations were performed in order to examine the effect of those detector parameters. Performance of the designed large-scale Compton camera was also estimated for various monitoring condition with realistic modeling. The conclusion of the present study indicates that the energy resolution of the component detector is the limiting factor of imaging resolution rather than the position resolution. Also, the designed large-scale Compton camera provides the 16.3 cm image resolution in full width at half maximum (angular resolution: $9.26^{\circ}$) for the depleted uranium source considered in this study located at the 1 m from the system when the component detectors have 10% energy resolution and 7 mm position resolution.

Analysis of Fire Occurrence Characteristics According to Ignition Heat Sources (발화열원에 따른 화재발생 특성 분석)

  • Lee, Kyung-Su;Kim, Tae-Hyeung;Lee, Jae-Ou
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.2
    • /
    • pp.280-289
    • /
    • 2022
  • Purpose: In this study, the characteristics of fire occurrence according to ignition heat sources such as operating equipment, cigarette/lighter fire, and flame/fire were analyzed. Method: One-way ANOVA and cross-analysis were used to analyze the characteristics of fire occurrence by verifying the difference between the ignition environment, fire damage status and scale, and cause of ignition according to the ignition heat source. Result: The fire occurrence characteristics were analyzed through As a result of the analysis, it was found that fires caused by operating devices occurred more frequently on weekdays than other ignition heat sources, and the number of victims and the number of victims were the highest, so mobilization of firefighting power and property damage were the greatest. The initial ignition was generated by electric and electronic devices, and the combustion was expanded by the synthetic resin. For fires caused by cigarette and lighter fires, the most fires occurred on Saturdays and Sundays, and the mobilization of the police force was more characteristic than the mobilization of the firefighting force. In particular, it was found that the initial ignition and combustion expansion were caused by paper, wood, and hay. Fires caused by sparks and sparks occurred most frequently on Saturdays and Sundays, and initial ignition and combustion expansion were found to be caused by paper, wood, and hay. In particular, it showed the characteristic that it occurred in the place farthest from the fire station. The common characteristic of all ignition heat sources was that the fire occurred most frequently in the afternoon time, and the fire type was predominantly the building structure fire, and only the ignition point was burned the most. Conclusion: In order to prevent fire and minimize damage, it is necessary to analyze the tendency of fire occurrence and to prepare appropriate preparations according to the fire occurrence factors. In order to analyze the characteristics of fire occurrence using public data in the future, it is necessary to standardize disaster data and to open and activate data.

Development of a smart cane concept for guiding the visually impaired - focused on design thinking learning practices for students - (시각장애인을 위한 길 안내용 스마트 지팡이 콘셉트 개발)

  • Park, Hae Rim;Lee, Min Sun;Yang, Ho Jung
    • Journal of Service Research and Studies
    • /
    • v.13 no.1
    • /
    • pp.186-200
    • /
    • 2023
  • This study aims to improve the usability of the white cane, which is walking equipment that most local visually impaired people use and carry when going out, and to contribute to the prevention of safety accidents and the walking rights of visually impaired people by providing improvement and resolution measures for the problems identified. Also, this study is a study on the visually impaired, primarily targeting the 1st to 2nd degree visually impaired people, who cannot go out on their own without walking equipment such as a white cane, corresponding to 20% among approximately 250,000 blind and low vision people in the Korean population. In the study process, the concept has been developed from the user's point of view in order that the white cane becomes a real help in the walking step of the visually impaired and the improvement of usability of the white cane, the main walking equipment for the visually impaired, are done by problem identification through the Double Diamond Model of Design Thinking (Empathize → Define → Ideate → Prototype → Test (verify)). As a result of the investigation in the process of Empathy, a total of five issues was synthesized, including an increase in the proportion of the visually impaired people, an insufficient workforce situation to help all the visually impaired, an improvement and advancement of assistive devices essential for the visually impaired, problems of damage, illegal occupation, demolition, maintenance about braille blocks, making braille block paradigms for the visually impaired and for everyone. In Ideate and Prototype steps, situations derived from brainstorming were grouped and the relationship were made through the KJ method, and specific situations and major causes were organized to establish the direction of the concept. The derived solutions and major functions are defined in four categories, and representative situations requiring solutions and major functions are organized into two user scenarios. Ideas were visualized by arranging the virtual Persona and Customer Journey Map according to the situation and producing a prototype through 3D modeling. Finally, in the evaluation, the final concept derived is a device such a smart cane for guidance for the visually impaired as ① a smart cane emphasizing portability + ② compatibility with other electronic devices + ③ a product with safety and convenience.

A Study on Device Development for Electrical Fire Protection on Open Phase of Three-Phase Motor (3상 전동기 결상에 의한 전기화재 보호를 위한 장치 개발 연구)

  • Choi, Shin-Hyeong;Kwak, Dong-Kurl;Kim, Jin-Hwan
    • Fire Science and Engineering
    • /
    • v.26 no.1
    • /
    • pp.61-67
    • /
    • 2012
  • In the three-phase power system using the three-phase motor, when any one-phase is open-phase, the unbalanced current flows and the single-phase power supplied by power supply produces overcurrent to motor coil. As a result, the enormous damage and electrical fire can be given to the power system. Recently, the thermal over-current relay (THR) or electronic motor protection relay (EMPR) is mostly used as the open-phase detection device of the three-phase motor. When the over-current or overheat of electric line is generated, it detects and operates circuit breaker, but there is the defect that the sensing speed is slow, the operation can be sometimes failed, and the precision is decreased. In order to improve these problems, this paper is proposed a new control circuit topology for openphase protection using semiconductor devices. Therefore, the proposed open-phase protection device (OPPD) enhances the sensing speed and precision, and has the advantage of simple fitting in the three-phase motor control panel in the field, as it manufactures into small size and light weight. As a result, the proposed OPPD protects the three-phase motor, minimizes the electrical fire from openphase, and contributes for the stable driving of the power system. The performance and confidence of the proposed OPPD is confirmed by a great variety of the experiments of operation characteristic.

Characteristics of ZnO Nanorod/ZnO/Si(100) Grown by Hydrothermal Method (수열법으로 성장한 ZnO Nanorod/ZnO/Si(100)의 특성)

  • Jeong, Min-Ho;Jin, Yong-Sik;Choi, Sung-Min;Han, Duk-Dong;Choi, Dae-Kue
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.180-184
    • /
    • 2012
  • Nanostructures of ZnO, such as nanowires, nanorods, nanorings, and nanobelts have been actively studied and applied in electronic or optical devices owing to the increased surface to volume ratio and quantum confinement that they provide. ZnO seed layer (about 40 nm thick) was deposited on Si(100) substrate by RF magnetron sputtering with power of 60 W for 5 min. ZnO nanorods were grown on ZnO seed layer/Si(100) substrate at $95^{\circ}C$ for 5 hr by hydrothermal method with concentrations of $Zn(NO_3)_2{\cdot}6H_2O$ [ZNH] and $(CH_2)_6N_4$ [HMT] precursors ranging from 0.02M to 0.1M. We observed the microstructure, crystal structure, and photoluminescence of the nanorods. The ZnO nanorods grew with hexahedron shape to the c-axis at (002), and increased their diameter and length with the increase of precursor concentration. In 0.06 M and 0.08 M precursors, the mean aspect ratio values of ZnO nanorods were 6.8 and 6.5; also, ZnO nanorods had good crystal quality. Near band edge emission (NBE) and a deep level emission (DLE) were observed in all ZnO nanorod samples. The highest peak of NBE and the lower DLE appeared in 0.06 M precursor; however, the highest peak of DLE and the lower peak of NBE appeared in the 0.02 M precursor. It is possible to explain these phenomena as results of the better crystal quality and homogeneous shape of the nanorods in the precursor solution of 0.06 M, and as resulting from the bed crystal quality and the formation of Zn vacancies in the nanorods due to the lack of $Zn^{++}$ in the 0.02 M precursor.

(Development of Ring Core Auto-Classifier by Multi-Motor Control) (여러 개의 모터에 의하여 제어되는 링-코어 자동 선별기 개발)

  • Park, In-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.2
    • /
    • pp.104-115
    • /
    • 2002
  • Core is the main component of inductor. This core should be classified into around 10 classes according to the value of inductance and Q. The coil should be winded with the outer-boundary of this core by different number of turns. Theses kind of precise inductors would be required in the future environment which PCs and communication devices demand more high speed and lower voltage level. It would be quite unefficient that only one core is classified once a time. There, it will be developed so that 10 cores are classified simultaneously. For the operation of classifying 10 cores once in a time, suppose 10 test instruments could be used. In this case, it would take much cost since a test instrument Is expensive. So, by using only one test instrument, it is really more desirable that this system is developed. Each core classified by 10 different classes is to be stored into the corresponding box through the corresponding rubber hose. 10 cores are passed on a serial line and are placed on each testing slot. Here, each core located at each slot is tested, and then the bowl located on the top of a step motor is moved into the corresponding spot by rotating step motor with some angles. Each bowl connected with the corresponding box through rubber hose. Actually 100 hoses are connected, 10 step motors are rotated at 10 different angles, so the size is really so big, the shape of connecting 100 hoses is so complicated. Therefore it is anticipated that the system would be going to be easily out of ordered. In this paper the main purpose is to make several suggestions to be able to work well in these kinds of being affected by the abnormal operation of motors and the flow of cores.

Design and Implementation of Integrated E-Coaching system Based on Synchronous and Asynchronous (동기/비동기 기반의 통합 E-코칭 시스템 설계 및 구현)

  • Kim, DoYeon;Kim, DoHyeun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.1-7
    • /
    • 2015
  • Until now, face to face coaching has been applied almost for completing the goal in various field. Face to face coaching is difficult always to reach each other anywhere, anytime due to the availability of internet and mobile devices. Recently, e-coaching is attempted to expend. But current e-coaching is supporting the secondary role for face to face coaching. E-coaching system has many benefits to use advancement technologies in internet. Therefore, the development of e-coaching system based on horizontal relationships between coach and coachee needs to communication anytime and anywhere in Internet. Usually previous online coaching systems have four types of interactions i.e. electronic mail, video chat, text chat, phone call. Most of the e-coaching approaches are easy to access and provide communication synchronous; video chat is an excellent visibility, whereas e-mail is asynchronous and document-centric. In this paper, we design and implement the integration e-coaching system based on synchronous and asynchronous. This system provides the asynchronous coaching offered by way of e-mail, and the synchronous coaching used P2P (Peer to Peer) video chat and text group chat. This system allows simultaneously asynchronous and synchronous coaching, and supports individual and group communication for periodical or informal coaching.

Device Performances Related to Gate Leakage Current in Al2O3/AlGaN/GaN MISHFETs

  • Kim, Do-Kywn;Sindhuri, V.;Kim, Dong-Seok;Jo, Young-Woo;Kang, Hee-Sung;Jang, Young-In;Kang, In Man;Bae, Youngho;Hahm, Sung-Ho;Lee, Jung-Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.601-608
    • /
    • 2014
  • In this paper, we have characterized the electrical properties related to gate leakage current in AlGaN/GaN MISHFETs with varying the thickness (0 to 10 nm) of $Al_2O_3$ gate insulator which also serves as a surface protection layer during high-temperature RTP. The sheet resistance of the unprotected TLM pattern after RTP was rapidly increased to $1323{\Omega}/{\square}$ from the value of $400{\Omega}/{\square}$ of the as-grown sample due to thermal damage during high temperature RTP. On the other hand, the sheet resistances of the TLM pattern protected with thin $Al_2O_3$ layer (when its thickness is larger than 5 nm) were slightly decreased after high-temperature RTP since the deposited $Al_2O_3$ layer effectively neutralizes the acceptor-like states on the surface of AlGaN layer which in turn increases the 2DEG density. AlGaN/GaN MISHFET with 8 nm-thick $Al_2O_3$ gate insulator exhibited extremely low gate leakage current of $10^{-9}A/mm$, which led to superior device performances such as a very low subthreshold swing (SS) of 80 mV/dec and high $I_{on}/I_{off}$ ratio of ${\sim}10^{10}$. The PF emission and FN tunneling models were used to characterize the gate leakage currents of the devices. The device with 5 nm-thick $Al_2O_3$ layer exhibited both PF emission and FN tunneling at relatively lower gate voltages compared to that with 8 nm-thick $Al_2O_3$ layer due to thinner $Al_2O_3$ layer, as expected. The device with 10 nm-thick $Al_2O_3$ layer, however, showed very high gate leakage current of $5.5{\times}10^{-4}A/mm$ due to poly-crystallization of the $Al_2O_3$ layer during the high-temperature RTP, which led to very poor performances.

Material Life Cycle Assessment of Graphene 2wt% Added to Li1.6Ni0.35Mn0.65O2 Half-Cell (그래핀 2wt%를 첨가한 Li1.6Ni0.35Mn0.65O2 Half-Cell의 물질 전 과정 평가)

  • CHO, KYOUNG-WON;LEE, YOUNG-HWAN;HAN, JEONG-HEUM;YU, JAE-SEON;HONG, TAE-WHAN
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.1
    • /
    • pp.132-137
    • /
    • 2020
  • Lithium secondary batteries have become an important power source for portable electronic devices such as cellular phones, laptop computers. Presently, commercialized lithium-ion batteries use a LiCoO2 cathode. However, due to the high cost and environmental problems resulting from cobalt, an intensive search for new electrode materials is being actively conducted. Recently, solid solution LiMn1-xNixO2 have become attractive because of high capacity and enhanced safety at high voltages over 4.5 V. The Li1.6Ni0.35Mn0.65O2 compounds were conventionally prepared by a sol-gel method, which can produce the layered Li-Ni-Mn-O compounds with a high homogeneity. And by adding a graphene 2wt% the first charge-discharge voltage profiles was increased over Li1.6Ni0.35Mn0.65O2 compound. Also, the variation s of the discharge capacities with cycling showed a higher capacity retention rater. In this study, material lifecycle evaluation was performed to analyze the environmental impact characteristics of Li1.6Ni0.35Mn0.65O2 & graphene 2wt% half-cell manufacturing process. The software of material life cycle assessment was Gabi. Through this, environmental impact assessment was performed for each process. The environmental loads induced by Li1.6Ni0.35Mn0.65O2 & graphene 2wt% synthesis process were quantified and analyzed, and the results showed that the amount of power had the greatest impact on the environment.