• Title/Summary/Keyword: Electronic devices

Search Result 4,580, Processing Time 0.036 seconds

Remote O2 plasma functionalization for integration of uniform high-k dielectrics on large area synthesized few-layer MoSe2

  • Jeong, Jaehun;Choi, Yoon Ho;Park, Dambi;Cho, Leo;Lim, Dong-Hyeok;An, Youngseo;Yi, Sum-Gyun;Kim, Hyoungsub;Yoo, Kyung-Hwa;Cho, Mann?Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.281.1-281.1
    • /
    • 2016
  • Transition metal dichalcogenides (TMDCs) are promising layered structure materials for next-generation nano electronic devices. Many investigation on the FET device using TMDCs channel material have been performed with some integrated approach. To use TMDCs for channel material of top-gate thin film transistor(TFT), the study on high-k dielectrics on TMDCs is necessary. However, uniform growth of atomic-layer-deposited high-k dielectric film on TMDCs is difficult, owing to the lack of dangling bonds and functional groups on TMDC's basal plane. We demonstrate the effect of remote oxygen plasma pretreatment of large area synthesized few-layer MoSe2 on the growth behavior of Al2O3, which were formed by atomic layer deposition (ALD) using tri-methylaluminum (TMA) metal precursors with water oxidant. We investigated uniformity of Al2O3 by Atomic force microscopy (AFM) and Scanning electron microscopy (SEM). Raman features of MoSe2 with remote plasma pretreatment time were obtained to confirm physical plasma damage. In addition, X-ray photoelectron spectroscopy (XPS) was measured to investigate the reaction between MoSe2 and oxygen atom after the remote O2 plasma pretreatment. Finally, we have uniform Al2O3 thin film on the MoSe2 by remote O2 plasma pretreatment before ALD. This study can provide interfacial engineering process to decrease the leakage current and to improve mobility of top-gate TFT much higher.

  • PDF

Improvement Performance of Graphene-MoS2 Barristor treated by 3-aminopropyltriethoxysilane (APTES)

  • O, Ae-Ri;Sim, Jae-U;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.291.1-291.1
    • /
    • 2016
  • Graphene by one of the two-dimensional (2D) materials has been focused on electronic applications due to its ultrahigh carrier mobility, outstanding thermal conductivity and superior optical properties. Although graphene has many remarkable properties, graphene devices have low on/off current ratio due to its zero bandgap. Despite considerable efforts to open its bandgap, it's hard to obtain appropriate improvements. To solve this problem, heterojunction barristor was proposed based on graphene. Mostly, this heterojunction barristor is made by transition metal dichalcogenides (TMDs), such as molybdenum disulfide ($MoS_2$) and tungsten diselenide ($WSe_2$), which have extremely thickness scalability of TMDs. The heterojunction barristor has the advantage of controlling graphene's Fermi level by applying gate bias, resulting in barrier height modulation between graphene interface and semiconductor. However, charged impurities between graphene and $SiO_2$ cause unexpected p-type doping of graphene. The graphene's Fermi level modulation is expected to be reduced due to this p-doping effect. Charged impurities make carrier mobility in graphene reduced and modulation of graphene's Fermi level limited. In this paper, we investigated theoretically and experimentally a relevance between graphene's Fermi level and p-type doping. Theoretically, when Fermi level is placed at the Dirac point, larger graphene's Fermi level modulation was calculated between -20 V and +20 V of $V_{GS}$. On the contrary, graphene's Fermi level modulation was 0.11 eV when Fermi level is far away from the Dirac point in the same range. Then, we produced two types heterojunction barristors which made by p-type doped graphene and graphene treated 2.4% APTES, respectively. On/off current ratio (32-fold) of graphene treated 2.4% APTES was improved in comparison with p-type doped graphene.

  • PDF

The Effect of Thickness on Flexible, Electrical and Optical properties of Ti- ZnO films on Flexible Glass by Atomic Layer Deposition

  • Lee, U-Jae;Yun, Eun-Yeong;Gwon, Se-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.196.1-196.1
    • /
    • 2016
  • TCO(Transparent Conducting Oxide) on flat glass is used in thin-film photovoltaic cell, flat-panel display. Nowadays, Corning(R) Willow Glass(R), known as flexible substrate, has attracted much attention due to its many advantages such as reliable roll-to-roll glass processing, high-quality flexible electronic devices, high temperature process. Also, it can be an alternative to flexible polymer substrates which have their poor stability and degradation of electrical and optical qualities. For application on willow glass, the flexibility, electrical, optical properties can be greatly influenced by the TCO thin film thickness due to the inherent characterization of thin film in nanoscale. It can be expected that while thick TCO layer causes poor transparency, its sheet resistance become low. Also, rarely reports were focusing on the influence of flexible properties by varying TCO thickness on flexible glass. Therefore, it is very important to optimize TCO thickness on flexible Willow glass. In this study, Ti-ZnO thin films, with different thickness varied from 0 nm to 50 nm, were deposited on the flexible willow glass by atomic layer deposition (ALD). The flexible, electrical and optical properties were investigated, respectively. Also, these properties of Ti-doped ZnO thin films were compared with un-doped ZnO thin film. Based on the results, when Ti-ZnO thin films thickness increased, resistivity decreased and then saturated; transmittance decreased. The Figure of Merit (FoM) and flexibility was the highest when Ti-ZnO thickness was 40nm. The flexible, electrical and optical properties of Ti-ZnO thin films were better than ZnO thin film at the same thickness.

  • PDF

Long-term Air Stability of Small Molecules passivated-Graphene Field Effect Transistors

  • Shin, Dong Heon;Kim, Yoon Jeong;Kim, Sang Jin;Moon, Byung Joon;Oh, Yelin;Ahn, Seokhoon;Bae, Sukang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.237.1-237.1
    • /
    • 2016
  • Electrical properties of graphene-based field effect transistors (G-FETs) can be degraded in ambient conditions owing to physisorbed oxygen or water molecules on the graphene surface. Passivation technique is one of a fascinating strategy for fabrication of G-FETs, which allows to sustain electrical properties of graphene in the long term without disrupting its inherent properties: transparency, flexibility and thinness. Ironically, despite its importance in producing high performance graphene devices, this method has been much less studied compared to patterning or device fabrication processes. Here we report a novel surface passivation method by using atomically thin self-assembled alkane layers such as C18- NH2, C18-Br and C36 to prevent unintentional doping effects that can suppress the degradation of electrical properties. In each passivated device, we observe a shift in charge neutral point to near zero gate voltage and it maintains the device performance for 1 year. In addition, the fabricated PG-FETs on a plastic substrate with ion-gel gate dielectrics exhibit not only mechanical flexibility but also long-term stability in ambient conditions. Therefore, we believe that these highly transparent and ultra-thin passivation layers can become a promising candidate in a wide range of graphene based electronic applications.

  • PDF

Degradation Behavior of Eutectic and Pb-free Solder Plated Ribbon in Crystalline Silicon Photovoltaic Module (유무연 용융도금 리본에 따른 결정질 실리콘 태양전지 모듈 열화거동)

  • Kim, Ju-Hee;Kim, A Yong;Park, Nochang;Ha, Jeong Won;Lee, Sang Guon;Hong, Won Sik
    • Journal of Welding and Joining
    • /
    • v.32 no.6
    • /
    • pp.75-81
    • /
    • 2014
  • Usage of heavy metal element (Pb, Hg and Cd etc.) in electronic devices have been restricted due to the environmental banning of the European Union, such as WEEE and RoHS. Therefore, it is needed to develop the Pb-free solder plated ribbon in photovoltaic (PV) module. This study described that degradation characteristics of PV module under damp heat (DH, $85^{\circ}C$ and 85% R.H.) condition test for 1,000 h. Solar cell ribbons were utilized to hot dipping plate with Pb-free solder alloys. Two types of Pb-free solder plated ribbons, Sn-3.0Ag-0.5Cu (SAC305) and Sn-48Bi-2Ag, and an electroless Sn-40Pb solder hot dipping plated ribbon as a reference sample were prepared to evaluate degradation characteristics. To detect the degradation of PV module with the eutectic and Pb-free solder plated ribbons, I-V curve, electro-luminescence (EL) and cross-sectional SEM analysis were carried out. DH test results show that the reason of maximum power (Pm) drop was mainly due to the decrease fill factor (FF). It was attributed to the crack or oxidation of interface between the cell and the ribbon. Among PV modules with the eutectic and Pb-free solder plated ribbon, the PV module with SAC305 ribbon relatively showed higher stability after DH test than the case of PV module with Sn-40Pb and Sn-48Bi-2Ag solder plated ribbons.

User Interaction Library for Natural Science Education Digital App-Book on Android Platform (안드로이드 기반 자연과학 교육용 디지털 앱북 개발을 위한 사용자 상호작용 라이브러리)

  • Lee, Kang-Woon;Beak, A-Ram;Choi, Haechul
    • Journal of Broadcast Engineering
    • /
    • v.20 no.1
    • /
    • pp.110-121
    • /
    • 2015
  • The digital app-book is an advanced form of the electronic book (e-book), which attracts a lot of interests by the help of video, sound, sensors and a variety of interactions. As mobile devices have evolved, the demand of digital app-books is also rising substantially. However, the distribution of digital app-book contents is hard to meet the demand because the digital app-book requires a lot of programming cost for the interaction. To resolve this problem, Was verified and implementation as a library function of the interaction between device and user. The proposed library consists of three parts (user action recognition, device action, and content action) and provides various user-device interaction functions by combining methods of each part, which can support source code reusability, easy understanding and availability, and wide expandibility. The library was used in the development of natural science education app-book contents. As a result, it could reduce a lot of code lines and facilitate more rapid app-book development.

Steady-State Performance Analysis of Air Conditioner with Multi-Indoor Units (복수 실내기를 가지는 에어컨의 정상상태 성능해석)

  • Hur, Hyun;Lee, Jin Wook;Jung, Eui Guk;Kim, Byung Soon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.11
    • /
    • pp.705-715
    • /
    • 2016
  • In this study, the cycle performance of an air conditioner with multi-indoor units is analyzed and simulated. The cycle performance could be predicted through the integration of mathematical formulation for these devices. The condenser pressure is obtained by an iteration process to match the mass flow rates of the compressor and the expansion valve and the evaporator pressure is determined by an iteration process, in which the suction super heat is tracing the targeted super heat. The required software was developed by system programming. the software algorithm is extended to predict the cycle performance of an air conditioner system with multi-indoor units, and then the numerical results are compared with experimental results. This mathematical model is validated from the result of experiments conducted on 8.3kW air conditioner. The errors in capacity, electronic power, and COP are found to be within 10% in general.

Ontology Components for the Depression Management based on Context (상황기반의 우울증 관리를 위한 온톨로지 구성요소)

  • Kang, Yun-Jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1785-1790
    • /
    • 2016
  • There is exhibit a degree of pain in the occurrence and course of treatment levels or oral, pain rating scale actions, such as illness, for example, the discomfort scale because of the pain "annoying", "unpleasant" "annoyed am", "painful" represents a pain scale of the order of "painful", "hard to bear", "very difficult to bear". Depression is recognized based on the premise of the situation, because it is difficult to recognize themselves. In this paper we define the components of the depression can be seen lifestyle which can lead to depression or through a biological signal. The depression index was derived from the ontology modeling to understand the state of depression. Depression ontology components and depression index will be aware of the situation based information services for depression. Combined with the situational awareness based devices and can be synchronized to verify the results of the depression index. It will be applied to improve lifestyle factors that of depression.

Research of shape optimization for High-Efficiency Electronic cold modules taking into consideration thickness and thermoelectric element mounting position (두께와 열전소자 부착위치를 고려한 자동차용 고효율 전자 냉온 모듈 형상 최적화 연구)

  • Kim, Jae-Won;Lee, Jung-Ho;Park, Chan-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8350-8356
    • /
    • 2015
  • The demand for user convenient devices in automotive applications are fast growing, mainly driven by the customer's requirement for higher efficiency and more features. In important such feature is the cold module for cars, which are convenient luxuries that warm or cool drinks placed in the cup holder by means of a thermoelectric element. In present study, we would like to find out the optimal thickness of the cup holder and mounting position of the thermoelectric element through experiments under various testing conditions and thermal analysis. The resulting thermal distribution of the primary area of thermal analysis was found to be lowest when the thickness was 2.5 mm. The temperature distribution was also lowest when the thermal element was positioned underneath the holder (A-type).

Life Prediction of Failure Mechanisms of the CubeSat Mission Board using Sherlock of Reliability and Life Prediction Tools (신뢰성 수명예측 도구 Sherlock을 이용한 큐브위성용 임무보드의 고장 메커니즘별 수명예측)

  • Jeon, Su-Hyeon;Kwon, Yae-Ha;Kwon, Hyeong-Ahn;Lee, Yong-Geun;Lim, In-OK;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.2
    • /
    • pp.172-180
    • /
    • 2016
  • A cubesat classified as a pico-satellite typically uses commercial-grade components that satisfy the vibration and thermal environmental specifications and goes into mission orbit even after undergoing minimum environment tests due to their lower cost and short development period. However, its reliability exposed to the physical environment such as on-orbit thermal vacuum for long periods cannot be assured under minimum tests criterion. In this paper, we have analysed the reliability and life prediction of the failure mechanisms of the cubesat mission board during its service life under the launch and on-orbit environment by using the sherlock software which has been widely used in automobile fields to predict the reliability of electronic devices.