• Title/Summary/Keyword: Electronic devices

Search Result 4,580, Processing Time 0.043 seconds

Development of Highly Reliable Power and Communication System for Essential Instruments Under Severe Accidents in NPP

  • Choi, Bo Hwan;Jang, Gi Chan;Shin, Sung Min;Lee, Soo Ill;Kang, Hyun Gook;Rim, Chun Taek
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1206-1218
    • /
    • 2016
  • This article proposes a highly reliable power and communication system that guarantees the protection of essential instruments in a nuclear power plant under a severe accident. Both power and communication lines are established with not only conventional wired channels, but also the proposed wireless channels for emergency reserve. An inductive power transfer system is selected due to its robust power transfer characteristics under high temperature, high pressure, and highly humid environments with a large amount of scattered debris after a severe accident. A thermal insulation box and a glass-fiber reinforced plastic box are proposed to protect the essential instruments, including vulnerable electronic circuits, from extremely high temperatures of up to $627^{\circ}C$ and pressure of up to 5 bar. The proposed wireless power and communication system is experimentally verified by an inductive power transfer system prototype having a dipole coil structure and prototype Zigbee modules over a 7-m distance, where both the thermal insulation box and the glass-fiber reinforced plastic box are fabricated and tested using a high-temperature chamber. Moreover, an experiment on the effects of a high radiation environment on various electronic devices is conducted based on the radiation test having a maximum accumulated dose of 27 Mrad.

A Study on Future System Construction Using WSCR Strengthness Index based on Python (Python 기반 WSCR 강건 지수를 이용한 미래계통 구축에 관한 연구)

  • Park, Seong-Jun;Hur, Jin;Kim, Hyun-Jin;Cho, Yoon-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.8
    • /
    • pp.994-1001
    • /
    • 2018
  • In this paper, to studied about future power system construction using PSS / E-Python API. Python-based future system automatical construction methods and modeling of renewable sources. it confirmed the stability of the powert system for each renewable area by calculating the weighted short circuit ratio (WSCR) index. it calculated the short circuit ratio (SCR) and selected the transmission line linkage scenario to improve the stability of vulnerable areas. it confirmed the WSCR index improvement through the selected transmission line linkage of scenario, and analyzed the stability of the renewable power system applying the scenario. It describes Facts and Shunt devices adjustment for the load flow convergence. It describes the stable methed of the bus voltage through the transformer Ratio Tap adjustment. By performing PSS/E ASCC using the Python it was performed three-phase short circuit fault capacity analysis, it is confirmed whether excess of the fault current circuit breaker capacity. In order to contingency accident analysis, it have described the generation of one or two line list of each areas using the Python. The list is used to contingency analysis and describe the soluted of the transmission line overload through comparison before and after adding the scenario line.

NFC Payment System Model for Security Privacy and Location Information of User (사용자 개인 정보 및 위치 정보를 보호하기 위한 NFC결제 시스템 모델)

  • Kim, Kyung-Ihl;Jeon, Gwi-su;Chae, Gyoo-Soo
    • Journal of Convergence Society for SMB
    • /
    • v.5 no.2
    • /
    • pp.21-26
    • /
    • 2015
  • Recently, NFC technology of short-range wireless communication using a smart phone to perform personal authentication with the electronic payment has been in the spotlight in various fields. However, the security associated with the personal information and the location information is vulnerable because it is easily fused with the existing mobile services and devices. In this paper, we propose a model for NFC payments help protect personal information and location information of NFC payment systems and services in various fields. Proposed model uses tag-based services in order to protect personal information and position information. The proposed model using the tag-based services is the place to check the various features available information in a simple Tag that can be easily accessed.

  • PDF

High-Performance Amorphous Multilayered ZnO-SnO2 Heterostructure Thin-Film Transistors: Fabrication and Characteristics

  • Lee, Su-Jae;Hwang, Chi-Sun;Pi, Jae-Eun;Yang, Jong-Heon;Byun, Chun-Won;Chu, Hye Yong;Cho, Kyoung-Ik;Cho, Sung Haeng
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1135-1142
    • /
    • 2015
  • Multilayered ZnO-$SnO_2$ heterostructure thin films consisting of ZnO and $SnO_2$ layers are produced by alternating the pulsed laser ablation of ZnO and $SnO_2$ targets, and their structural and field-effect electronic transport properties are investigated as a function of the thickness of the ZnO and $SnO_2$ layers. The performance parameters of amorphous multilayered ZnO-$SnO_2$ heterostructure thin-film transistors (TFTs) are highly dependent on the thickness of the ZnO and $SnO_2$ layers. A highest electron mobility of $43cm^2/V{\cdot}s$, a low subthreshold swing of a 0.22 V/dec, a threshold voltage of 1 V, and a high drain current on-to-off ratio of $10^{10}$ are obtained for the amorphous multilayered ZnO(1.5nm)-$SnO_2$(1.5 nm) heterostructure TFTs, which is adequate for the operation of next-generation microelectronic devices. These results are presumed to be due to the unique electronic structure of amorphous multilayered ZnO-$SnO_2$ heterostructure film consisting of ZnO, $SnO_2$, and ZnO-$SnO_2$ interface layers.

Fabrication, Mesurement and Evaluation of Silicon-Gate n-well CMOS Devices (실리콘 게이트 n-well CMOS 소자의 제작, 측정 및 평가)

  • Ryu, Jong-Seon;Kim, Gwang-Su;Kim, Bo-U
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.5
    • /
    • pp.46-54
    • /
    • 1984
  • A silicon-gate n-well CMOS process with 3 $\mu$m gate length was developed and its possibility for the applications was discussed,. Threshold voltage was easily controlled by ion implantation and 3-$\mu$m gate length with 650 $\AA$ oxide shows ignorable short channel effect. Large value of Al-n+ contact resistance is one of the problems in fabrications of VLSI circuits. Transfer characteristics of CMOS inverter is fairly good and the propagation delay time per stage in ring oscillator with layout of (W/L) PMOS /(W/L) NMOS =(10/5)/(5/5) is about 3.4 nsec. catch-up occurs on substrate current of 3-5 mA in this process and critically dependent on the well doping density and nt-source to n-well space. Therefore, research, more on latch-up characteristics as a function of n-well profile and design rule, especially n+-source to n-well space, is required.

  • PDF

A 0.8V 816nW Delta-Sigma Modulator Applicaiton for Cardiac Pacemaker (카디악 페이스메이커용 0.8V 816nW 델타-시그마 모듈레이터)

  • Lee, Hyun-Tae;Heo, Dong-Hun;Roh, Jeong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.1
    • /
    • pp.28-36
    • /
    • 2008
  • This paper discusses theimplementation of the low-voltage, low-power, third-order, 1-bit switched capacitor delta-sigma modulator of the implantable cardiac pacemaker. The distributed, feed-forward structure and bulk-driven OTA were used in order to achieve an efficient operation under a supply voltage of 1V or lower. The designed modulator has a dynamic range of 49dB at 0.9V supply voltage and consumes 816nW of power. Such a significant reduction in power consumption allows diverse applications, not only in pacemakers, but also in implantable biomedical devices that operate with limited battery power. The core chip size of the modulator is $1000{\mu}m*500{\mu}m$ manufactured, with the $0.18{\mu}m$ CMOS standard process.

Untact Mobile Order Payment System Using Short Range Wireless Communication Technology (근거리 무선 통신기술을 활용한 언택트 모바일 주문 결제 시스템)

  • Lee, Ju-Sang;Lee, Hyo-Seung;Oh, Jae-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.231-236
    • /
    • 2020
  • In today's society, the majority of people use smartphones, and mobile ordering and payment systems for their convenience are gaining their attention. The mobile payment market is on the rise, with over 71% of the market that is already formed in China. Many mobile payment markets are growing in Korea, which is a system that is provided only in large franchises. In this paper, we propose a mobile ordering and payment system using short-range wireless communication technology that can be easily used not only in franchises but also in the small businesses, and for the convenience of users in modern society to make a system that enables ordering and payment through mobile to communicate between the devices developed by short range wireless communication technology, smartphone and the main server.

Degradation of RF Receiver Sensitivity Due to TVS Diode (TVS Diode에 의한 안테나 무선감도 저하 분석)

  • Hwang, Yoon-Jae;Park, Je-Kwang;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.10
    • /
    • pp.979-986
    • /
    • 2013
  • In this paper, a TVS diode which is commonly used as a ESD protector in wireless communication devices could cause antenna wireless sensitivity to decrease has been analyzed. When a smartphone doesn't have enough space to place many components, there would be its speaker near antenna area. In order to protect ESD coming through the speaker there also could be a TVS within antenna GND area. Digital audio signal which was sent to speaker and CDMA RF communication signal coupled from antenna was mixed by TVS. And this leakage current running through TVS resulted in decrease of antenna wireless sensitivity. The results of various experiments can be explained using circuit simulation. Following works will give us some insights that can reduce unwanted summation of digital and RF signal due to nonlinearity of ESD protectors.

Electrical Properties of OLEDs due to the Hole-size of Crucible Boat and Deposition Rate of Hole Transport Layer (Crucible Boat 홀 크기와 정공 수송층 증착속도에 따른 유기밭광 다이오드의 전기적 특성)

  • Kim, Weon-Jong;Shin, Hyun-Teak;Shin, Jong-Yeol;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.1
    • /
    • pp.74-80
    • /
    • 2009
  • In the structure of ITO/N,N'-diphenyl-N,N' bis (3-methylphenyl)-1,1'-biphenyl-4,4'-diamine(TPD)/tris (8-hydroxyquinoline)aluminum($Alq_3$)/Al device, we studied the efficiency improvement of organic light-emitting diodes due to variation of deposition rate of hole transport layer (TPD) materials using hole-size of crucible boat. The thickness of TPD and $Alq_3$ was manufactured 40 nm, 60 nm, respectively under a base pressure of $5{\times}10^{-6}$ Torr using a thermal evaporation. The $Alq_3$ used for an electron-transport and emissive layer were evaporated to be at a deposition rate of $2.5\;{\AA}/s$. When the deposition rate of TPD increased from 1.5 to $3.0\;{\AA}/s$, we studied the efficiency improvement of TPD using the hole-size of crucible is 1.0 mm. When the deposition rate of TPD is $2.5\;{\AA}/s$, we found that the average roughness is rather smoother, the luminous efficiency the external quantum efficiency is superior to the others. Compared to the two from the devices made with the deposition rate of TPD is $2.0\;{\AA}/s$ and $3.0\;{\AA}/s$, the external quantum efficiency was improved by four-times and two-times, respectively.

Electrical Characteristics of Organic Light-emitting Diodes Fabricated by Varying a Hole-size in Evaporation Boat

  • Kim, Weon-Jong;Park, Young-Ha;Cho, Kyung-Soon;Hong, Jin-Woong;Shin, Jong-Yeol;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.3
    • /
    • pp.105-109
    • /
    • 2008
  • Electrical characteristics of organic light-emitting diodes were investigated by varying a hole-size in evaporation boat in the device structure of ITO/tris(8-hydroxyquinoline) aluminum$(Alq_3)$/Al. The device was manufactured using a thermal evaporation under a base pressure of $5{\times}10^{-6}$ Torr. The $Alq_3$ emitting organics were evaporated to be a thickness of 100 nm at a deposition rate of $1.5{\AA}/s$. A cylindrical-shaped evaporation boat was made out of stainless steel with a small size of hole on top of the boat. Several evaporation boats were made having a different hole size on top; 0.8 mm, 1.0 mm, 1.5 mm, and 3.0 mm. We found that when the hole size on top of the evaporation boat is 1.0 mm, the average roughness is rather smoother compared to the other ones. Also, luminance and external quantum efficiency are superior to the others. Compared to the ones from the devices made with the hole-size of 0.8 mm boat. The luminance and external quantum efficiency of the device made with the hole-size of 1.0 mm boat were improved by a factor of seventy and thirty three, respectively. Also operating voltage is reduced to 2 V.