• Title/Summary/Keyword: Electronic devices

Search Result 4,580, Processing Time 0.028 seconds

A Study on the Fabrication of Integrated Optical Electric-Field Sensor and Performance utilizing Asymmetric $Ti:LiNbO_3$ Mach-Zehnder Interferometer (비대칭 $Ti:LiNbO_3$ Mach-Zehnder 간섭기를 이용한 집적광학 전계센서 제작 및 성능에 관한 연구)

  • Ha, Jeongho;Jung, Hongsik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.128-134
    • /
    • 2012
  • The performance evaluation and fabrication of integrated-optic electric-field sensor utilizing $Ti:LiNbO_3$ asymmetric Mach-Zehnder intensity modulator with a push-pull lumped electrode and a plate-type probe antenna to measure an electric field strength is described. The modulator has a small device size of $46{\times}7{\times}1\;mm$ and operates at a wavelength $1.3{\mu}m$. The devices are simulated based on the BPM software and fabricated utilizing Ti-diffused $LiNbO_3$ channel optical waveguides. The minimum detectable electric field is 1.02 V/m and 6.91 V/m, corresponding to a dynamic range of ~35 dB and ~10 dB at the frequencies of 500 KHz and 5 MHz, respectively.

Chromatic Aberration Correction Method by Considering Local Properties of the Image (영상의 국부적 특성을 고려한 색수차 보정 방법)

  • Kang, Hee;Kang, Moon Gi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.119-126
    • /
    • 2013
  • In this paper, we propose a chromatic aberration removal algorithm in image capture devices, which considers local properties of the image. Chromatic aberration is generated by the fact that the refractive index of the lens is different for different wavelengths, which produces color artifacts on strong edge due to misalignment of RGB channels. Under the characteristics of the artifacts, the proposed algorithm first estimates the regions with the apparent color artifacts as the neighborhoods of the strong edge. In the regions, the proposed algorithm removes the color artifacts by matching the edges of RGB channels. The widely used conventional methods based on global image warping could not remove the color artifacts of longitudinal chromatic aberration and purple fringing identified by the image sensor, whereas the matching process of the proposed method could reduce them. Experimental results show that the proposed algorithm outperforms the conventional methods on objective and subjective criteria.

Pi Logger : Low-cost Greenhouse Image and Environmental Data Collection System for Invigorating Smart Farm Propagation (Pi Logger : 스마트 팜 보급 확대를 위한 저가형 온실 영상 및 환경 데이터 수집 시스템)

  • Seong, Gi-Cheon;Kim, Young-Geun;Yang, Won-Mo;Kim, Won-Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.11
    • /
    • pp.1121-1128
    • /
    • 2016
  • Our country of agriculture suffers problems such as aging, population decline, agricultural decline etc. To solve this problem, in the country, it is interest in Smart Farm System, a convenient and efficient system for the production through the convergence of ICT technology and agriculture. However, because of expensive construction costs and difficulty in securing human resources and training for Operating system, they are struggling to spread the actual farmers. Therefore, it is necessary to develop smart farm techniques suitable for such customized domestic environment. This study designed a system for collecting environment date in a greenhouse based on the low-cost embedded devices, and designed and implemented for the Web application that a user can easily use system. The implementation of the system lowers deployment costs and is expected to increase largely the spread of Smart Farm it can be easily accessed by using the smart phone.

Thermoelectric properties of individual PbTe nanowires grown by a vapor transport method

  • Lee, Seung-Hyun;Jang, So-Young;Lee, Jun-Min;Roh, Jong-Wook;Park, Jeung-Hee;Lee, Woo-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.7-7
    • /
    • 2009
  • Lead telluride (PbTe) is a very promising thermoelectric material due to its narrow band gap (0.31 eV at 300 K), face-centered cubic structure and large average excitonic Bohr radius (46 nm) allowing for strong quantum confinement within a large range of size. In this work, we present the thermoelectric properties of individual single-crystalline PbTe nanowires grown by a vapor transport method. A combination of electron beam lithography and a lift-off process was utilized to fabricate inner micron-scaled Cr (5 nm)/Au (130 nm) electrodes of Rn (resistance of a near electrode), Rf (resistance of a far electrode) and a microheater connecting a PbTe nanowire on the grid of points. A plasma etching system was used to remove an oxide layer from the outer surface of the nanowires before the deposition of inner electrodes. The carrier concentration of the nanowire was estimated to be as high as $3.5{\times}10^{19}\;cm^{-3}$. The Seebeck coefficient of an individual PbTe nanowire with a radius of 68 nm was measured to be $S=-72{\mu}V/K$ at room temperature, which is about three times that of bulk PbTe at the same carrier concentration. Our results suggest that PbTe nanowires can be used for high-efficiency thermoelectric devices.

  • PDF

Local oxidation of 4H-SiC using an atomic force microscopy (Atomic Force Microscopy을 이용한 4H-SiC의 Local Oxidation)

  • Jo, Yeong-Deuk;Bahng, Wook;Kim, Sang-Cheol;Kim, Nam-Kyun;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.79-80
    • /
    • 2009
  • The local oxidation using an atomic force microscopy (AFM) is useful for Si-base fabrication of nanoscale structures and devices. SiC is a wide band-gap material that has advantages such as high-power, high-temperature and high-frequency in applications, and among several SiC poly types, 4H-SiC is the most attractive poly type due to the high electron mobility. However, the AFM local oxidation of 4H-SiC for fabrication is still difficult, mainly due to the physical hardness and chemical inactivity of SiC. In this paper, we investigated the local oxidation of 4H-SiC surface using an AFM. We fabricated oxide patterns using a contact mode AFM with a Pt/Ir-coated Si tip (N-type, $0.01{\sim}0.025\;{\Omega}cm$) at room temperature, and the relative humidity ranged from 40 to 50%. The height of the fabricated oxide pattern ($1{\sim}3\;nm$) on SiC is similar to that of typically obtained on Si ($10^{15}{\sim}10^{17}\;cm^{-3}$). We perform the 2-D simulation to further analyze the electric field between the tip and the surface. Whereas the simulated electric field on Si surface is constant ($5\;{\times}\;10^7\;V/m$), the electric field on SiC surface increases with increasing the doping concentration from ${\sim}10^{15}$ to ${\sim}10^{17}\;cm^{-3}$. We demonstrated that a specific electric field ($4\;{\times}\;10^7\;V/m$) and a doping concentration (${\sim}10^{17}\;cm^{-3}$) is sufficient to switch on/off the growth of the local oxide on SiC.

  • PDF

Electrical and Optical Properties of OLEDs Depending on the Layer Change of HIL Teflon-AF and EIL Li2CO3 (정공주입층재료 Teflon-AF와 전자주입층재료 Li2CO3의 층수 변화에 따른 유기발광다이오드의 전기·광학적 특성)

  • Kwang, Yong-Gil;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.1
    • /
    • pp.50-55
    • /
    • 2014
  • It was firstly found in 1st group element. Recently, it has been reported on the improvement of efficiency of the OLEDs by introducing thin layer of some carbonate materials of alkali metal. In order to improve the efficiency of OLEDs which is one of the next generation displays, we have studied the electrical characteristics of the device depending on the thickness ratio of the hole-injection layer to the electron-injection layer. Teflon-AF was used as the hole-injection material, and alkali-metal carbonates of $Li_2CO_3$ were used as the electron-injection materials. To obtain a proper thickness ratio, we manufactured. Four types of devices with the thickness ratio of HIL to EIL were made to be 1 : 4, 2 : 3, 3 : 2, and 4 : 1. The results of electrical and optical properties showed that the device with the thickness ratio of 4 : 1 is the most excellent result. In addition, to prepare a four-layer device by inserting the ${\alpha}$-NPD is a hole transporting material was compared with three-layer element. As a result, the maximum luminance, the maximum luminous efficiency, maximum external quantum efficiency of about 124 [%], 164 [%], 106 [%] improve was confirmed.

Self Heating Effects in Sub-nm Scale FinFETs

  • Agrawal, Khushabu;Patil, Vilas;Yoon, Geonju;Park, Jinsu;Kim, Jaemin;Pae, Sangwoo;Kim, Jinseok;Cho, Eun-Chel;Junsin, Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.88-92
    • /
    • 2020
  • Thermal effects in bulk and SOI FinFETs are briefly reviewed herein. Different techniques to measure these thermal effects are studied in detail. Self-heating effects show a strong dependency on geometrical parameters of the device, thereby affecting the reliability and performance of FinFETs. Mobility degradation leads to 7% higher current in bulk FinFETs than in SOI FinFETs. The lower thermal conductivity of SiO2 and higher current densities due to a reduction in device dimensions are the potential reasons behind this degradation. A comparison of both bulk and SOI FinFETs shows that the thermal effects are more dominant in bulk FinFETs as they dissipate more heat because of their lower lattice temperature. However, these thermal effects can be minimized by integrating 2D materials along with high thermal conductive dielectrics into the FinFET device structure.

Design and Fabrication of a Surge Generator with Coupling/Decoupling Networks (커플링/디커플링 네트워크 내장 서지발생장치의 설계 및 제작)

  • Kim, Nam-Hoon;Kang, Tae-Ho;Shin, Han-Sin;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.130-134
    • /
    • 2020
  • Metal oxide varistors (MOVs) protect circuits and devices from transient overvoltages in electric power systems. However, a MOV continuously deteriorates owing to manufacturing defects or repetitive protective operations from transient overvoltages. A deteriorated MOV may result in a short circuit or a line-ground accident. Previous studies focused on the analysis of deterioration mechanisms and condition diagnosis techniques for MOVs owing to their recent growth of use. An accelerated deterioration experiment under the same conditions in which a MOV operates is essential. In this study, we designed and fabricated a surge generator that can apply a surge current to a MOV connected to AC mains. The coupling network operates at a low impedance against the surge current from the surge generator and transfers the surge current to the MOV under test. It also acts as a high impedance against AC mains for the AC voltage not to be applied to the surge generator. The decoupling network operates at a high impedance against the surge current and blocks the surge current from AC mains. It also acts as a low impedance against AC mains for the AC voltage to be applied to the MOV under test. The prototype surge generator can apply the 8/20 us up to 15 kA on AC voltages in the approximate range of 110~450 V, and it fully operates on a LabVIEW-based program.

Combustion Characteristics of Ionized Fuels for Battery System Safety (배터리 시스템 안전을 위한 이온화 연료의 연소 특성)

  • Ko, Hyeok Ju;Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.1
    • /
    • pp.22-27
    • /
    • 2018
  • Many electronic devices are powered by various rechargeable batteries such as lithium-ion recently, and occasionally the batteries undergo thermal runaway and cause fire, explosion, and other hazards. If a battery fire should occur in an electronic device of vehicle and aircraft cabin, it is important to quickly extinguish the fire and cool the batteries to minimize safety risks. Attempts to minimize these risks have been carried out by many researchers but the results have been still unsatisfied. Because most rechargeable batteries are operated on the ion state during charge and discharge of electricity and the combustion of ion state has big difference with normal combustion. Here we focused on the effect of ions including an electron during combustion process. The effects of an ionized fuel on the flame stability and the combustion products were experimentally investigated in the propane jet diffusion flames. The burner used in this experiment consisted of 7.5 mm diameter tube for fuel and the propane was ionized with th ionizer (SUNJE, SPN-11). The results show that toe overall flame stability and shape such as flame length has no significant difference even in the higher ion concentration. However the fuel ionization affects to the pollutant emissions such as NOx and soot. NOx and CO emissions measured in post flame region decreased by fuel ionization, especially high fuel velocity, i.e. high ion density. TGA analysis and morphology of soot by TEM indicates that the fuel ionization makes soot to be matured.

A study on the EMF strength standard in propulsion system on ship (선내 추진시스템에 대한 전자파 강도기준 연구)

  • Choi, Gi-Do;Kim, Jong-Woo;Cho, Hyung-Rae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.929-934
    • /
    • 2015
  • Because of the recent rapid advances in the development of ships with a larger proportion of electrical and electronic equipment, The usable frequency spread spectrum on ships is global trend. Therefore, concerns have been raised regarding the possible hazardous health effects of electromagnetic fields radiating from electronic devices. Although studies and investments on electro-magnetic fields in terrestrial areas are being conducted, they are not applied to a ship. In this paper, we measured electromagnetic fields in ship propulsion systems, and we analyzed the measured values against Korean and international standards. While the measured results satisfied the Korean standard, the Italian standard was not met in the switchboard area. However, the measured values were close to meeting the Italian standard. Therefore, further studies should be conducted for performing a comparative analysis of data in order to specify a standard of electromagnetic fields in propulsion systems that can be applied in the construction of government infrastructures.