• Title/Summary/Keyword: Electronic devices

Search Result 4,580, Processing Time 0.03 seconds

Fabrication and Time-Dependent Analysis of Micro-Hole in GaAs(100) Single Crystal Wafer Using Wet Chemical Etching Method (습식 화학적 식각 방법에 의한 시간에 따른 GaAs(100) 단결정 웨이퍼에서의 마이크로 구멍의 제작 및 분석)

  • Lee, Ha Young;Kwak, Min Sub;Lim, Kyung-Won;Ahn, Hyung Soo;Yi, Sam Nyung
    • Korean Journal of Materials Research
    • /
    • v.29 no.3
    • /
    • pp.155-159
    • /
    • 2019
  • Surface plasmon resonance is the resonant oscillation of conduction electrons at the interface between negative and positive permittivity material stimulated by incident light. In particular, when light transmits through the metallic microhole structures, it shows an increased intensity of light. Thus, it is used to increase the efficiency of devices such as LEDs, solar cells, and sensors. There are various methods to make micro-hole structures. In this experiment, micro holes are formed using a wet chemical etching method, which is inexpensive and can be mass processed. The shape of the holes depends on crystal facets, temperature, the concentration of the etchant solution, and etching time. We select a GaAs(100) single crystal wafer in this experiment and satisfactory results are obtained under the ratio of etchant solution with $H_2SO_4:H_2O_2:H_2O=1:5:5$. The morphology of micro holes according to the temperature and time is observed using field emission - scanning electron microscopy (FE-SEM). The etching mechanism at the corners and sidewalls is explained through the configuration of atoms.

A study on vertical alignment liquid crystal devices for electrically polarization controlled camera (전기적 편광 조절형 카메라를 위한 수직 배향형 액정 소자 연구)

  • Na-Kyung Lee;Hyeon-Sik Ahn;Sung-Min Kim;Min-Sang Kim;Seungseo Park;Yoonseuk Choi
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.512-517
    • /
    • 2023
  • In this study, we propose a liquid crystal-based polarization control technology that can control polarization by adjusting the voltage applied to the liquid crystal, and apply it to a Closed-circuit Television (CCTV) to transmit only the desired angle of polarized light. CCTV with conventional polarizing films cannot control polarization because they focus on backlight compensation, so light reflected from the water surface or highlights reflected from vehicles interfere with subject identification. However, the Vertical Alignment mode allows the polarization to be adjusted electrically, so that only the polarized light at the user's desired angle is transmitted, eliminating reflected highlights. The images obtained using this technique are optimized by computer software. Liquid crystal polarization panels, which can electrically control the polarization angle, transmittance, and polarization rate, have been applied to polarized image monitoring device to improve subject identification in conventional CCTV.

Analysis of Electrical Characteristics due to Deep Level Defects in 4H-SiC PiN Diodes (4H-SiC PiN 다이오드의 깊은 준위 결함에 따른 전기적 특성 분석)

  • Tae-Hee Lee;Se-Rim Park;Ye-Jin Kim;Seung-Hyun Park;Il Ryong Kim;Min Kyu Kim;Byeong Cheol Lim;Sang-Mo Koo
    • Korean Journal of Materials Research
    • /
    • v.34 no.2
    • /
    • pp.111-115
    • /
    • 2024
  • Silicon carbide (SiC) has emerged as a promising material for next-generation power semiconductor materials, due to its high thermal conductivity and high critical electric field (~3 MV/cm) with a wide bandgap of 3.3 eV. This permits SiC devices to operate at lower on-resistance and higher breakdown voltage. However, to improve device performance, advanced research is still needed to reduce point defects in the SiC epitaxial layer. This work investigated the electrical characteristics and defect properties using DLTS analysis. Four deep level defects generated by the implantation process and during epitaxial layer growth were detected. Trap parameters such as energy level, capture-cross section, trap density were obtained from an Arrhenius plot. To investigate the impact of defects on the device, a 2D TCAD simulation was conducted using the same device structure, and the extracted defect parameters were added to confirm electrical characteristics. The degradation of device performance such as an increase in on-resistance by adding trap parameters was confirmed.

Analysis of Key Parameters for the Printing Process Optimization of a Fluid Dispensing Systems (유체 디스펜싱 시스템의 프린팅 프로세스 최적화를 위한 주요 파라미터 분석)

  • Hoseung Kang;Haechang Jeong;Soonho Hong;Nam Kyung Yoon;Sunyoung Sohn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.382-393
    • /
    • 2024
  • The Microplotter system with a fluid dispensing method, sprays fluid based on ultrasonic pumping through piezoelectric devices. This technique can possible for various materials with a wide range of viscosities to be printed in microscale. In this paper, we introduces dispenser printing technology as well as aim to understand and apply various processes using the equipment. In addition, we will explain how to optimize the equipment by adjusting parameters such as spray intensity, tip height during printing, and patterning speed. By utilizing Microplotter's advantage of being compatible with a wide range of fluids, including metal nanoparticles, carbon nanotubes, DNA, and proteins, it is expected to be used in various fields such as printed electronics, biotechnology, and chemical engineering.

Development of Three-Dimensional Deformable Flexible Printed Circuit Boards Using Ag Flake-Based Conductors and Thermoplastic Polyamide Substrates

  • Aram Lee;Minji Kang;Do Young Kim;Hee Yoon Jang;Ji-Won Park;Tae-Wook Kim;Jae-Min Hong;Seoung-Ki Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.420-426
    • /
    • 2024
  • This study proposes an innovative methodology for developing flexible printed circuit boards (FPCBs) capable of conforming to three-dimensional shapes, meeting the increasing demand for electronic circuits in diverse and complex product designs. By integrating a traditional flat plate-based fabrication process with a subsequent three-dimensional thermal deformation technique, we have successfully demonstrated an FPCB that maintains stable electrical characteristics despite significant shape deformations. Using a modified polyimide substrate along with Ag flake-based conductive ink, we identified optimized process variables that enable substrate thermal deformation at lower temperatures (~130℃) and enhance the stretchability of the conductive ink (ε ~30%). The application of this novel FPCB in a prototype 3D-shaped sensor device, incorporating photosensors and temperature sensors, illustrates its potential for creating multifunctional, shape-adaptable electronic devices. The sensor can detect external light sources and measure ambient temperature, demonstrating stable operation even after transitioning from a planar to a three-dimensional configuration. This research lays the foundation for next-generation FPCBs that can be seamlessly integrated into various products, ushering in a new era of electronic device design and functionality.

EEPROM Charge Sensors (EEPROM을 이용한 전하센서)

  • Lee, Dong-Kyu;Jin, Hai-Feng;Yang, Byung-Do;Kim, Young-Suk;Lee, Hyung-Gyoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.605-610
    • /
    • 2010
  • The devices based on electrically erasable programmable read-only memory (EEPROM) structure are proposed for the detection of external electric charges. A large size charge contact window (CCW) extended from the floating gate is employed to immobilize external charges, and a control gate with stacked metal-insulator-metal (MIM) capacitor is adapted for a standard single polysilicon CMOS process. When positive voltage is applied to the capacitor of CCW of an n-channel EEPROM, the drain current increases due to the negative shift of its threshold voltage. Also when a pre-charged external capacitor is directly connected to the floating gate metal of CCW, the positive charges of the external capacitor make the drain current increase for n-channel, whereas the negative charges cause it to decrease. For an p-channel, however, the opposite behaviors are observed by the external voltage and charges. With the attachment of external charges to the CCW of EEPROM inverter, the characteristic inverter voltage behavior shifts from the reference curve dependent on external charge polarity. Therefore, we have demonstrated that the EEPROM inverter is capable of detecting external immobilized charges on the floating gate. and these devices are applicable to sensing the pH's or biomolecular reactions.

Improvement of Inverted Hybrid Organic Light-emitting Diodes Properties with Bar-coating Process (바코팅 공정을 이용한 유기 발광 다이오드 특성 향상)

  • Kwak, Sun-Woo;Yu, Jong-Su;Han, Hyun-Suk;Kim, Jung-Su;Lee, Taik-Min;Kim, Inyoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.589-595
    • /
    • 2013
  • Solution processed conjugated molecules enable to manufacture various electronic devices by unconventional and cost effective patterning methods as screen or gravure printing. Spin-coating is the most popularly used method to form conjugated polymeric film for various electronic devices. The coating method has certain disadvantages such as a large amount of unwanted wastes, difficulty forming a film with a large area, and impossible to apply roll-to-roll manufacturing. We present here a promising alternative coating method, bar-coating for conjugated polymer film and OLED with the bar coated light emitting layer. In this papers, we show atomic force microscope images of spin- and bar-coated Poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,8-diyl)] (F8BT) films on substrate. The bar-coated film showed a slight lower RMS roughness (1.058 [nm]) than spin-coated film (1.767 [nm]). It means the bar-coating is suitable method to form light emitting layers in OLEDs. By using bar-coating process, an OLED obtained with 4.7 [cd/A] in maximum current efficiency.

Lateral Position Measurement System for Precision Alignment of Roll-to-Roll Printing Using Alignment Patterns and Quantity of Light (정렬패턴과 광량을 이용한 롤투롤 인쇄전자공정의 횡 방향 웹 위치 측정 시스템)

  • Jung, Minkyu;Kim, Hyungi;Oh, Dongho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.879-884
    • /
    • 2015
  • Printed electronics is a technology that produces electronic devices and circuits by printing functional ink on a web, which is a film-like flexible material. This technology is suitable for large-scale and high-speed mass production, and is a next-generation process technology that can fabricate electronic devices from flexible materials. As precise measurement of the positions of the web is required in order to commercialize such a printed electronics process, a measurement system with an optical encoder with a precision of micrometers had been proposed in the preceding research of this study. However, the lateral positions of the web could not be measured in the preceding research as the phenomenon of the entire web being moved in the lateral direction could not be detected. In this study, a measurement system that utilizes the differences in the amount of light reflected from the alignment patterns depending on the web positions in the lateral direction was proposed for measuring the lateral positions of the web. In addition, its reliability was verified and then the effect when measuring printed alignment patterns was analyzed by experiments.

A Study on the Software Fault Modes and Effect Analysis for Software Safety Evaluation (소프트웨어 안전성 평가를 위한 소프트웨어 고장 유형과 영향 분석에 관한 연구)

  • Kim, Myong-Hee;Park, Man-Gon
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.1
    • /
    • pp.115-130
    • /
    • 2012
  • These days, most of safety-critical systems, which are systems those failures or malfunction may result in death or serious injury to people, or loss or severe damage to social systems, or environmental harm, are being built of embedded software or loaded controlling software systems on computers, electrical and electronic components or devices. There are a lot kind of fault analysis methods to evaluate safety of the safety-critical systems equipped computers, electrical and electronic components or devices with software. However, the only assessment method to evaluate software safety of a safety-critical system is not enough to analysis properly on account of the various types and characteristic of software systems by progress of information technology. Therefore, this paper proposes the integrated evaluation method and carries out a case study for the software safety of safety-critical system which embedded or loaded software sizes are small and control response times are not sensitive by use of two security analysis methods which are Fault Tree Analysis (FTA) and Fault Modes and Effect Analysis (FMEA) for ubiquitous healthcare system.

A Study for Electronic Trading Business System Using Big Data (빅데이터를 활용한 전자무역시스템에 대한 연구)

  • Lee, Cheol-Woong;Cho, Sung-Woo;Cho, Sae-Hong;Hwang, Dae-Hoon
    • Journal of Digital Contents Society
    • /
    • v.14 no.4
    • /
    • pp.573-580
    • /
    • 2013
  • With the growth of the smart-devices and information & communication technology, information society has developed and information can be produced, spread and consumed at much faster pace easily. Hence, individuals can utilize wireless communication and smart-devices to create, share and consume information at anytime and anywhere. The growth of technology has allowed the large-scale transfer and sharing of image, sound and video data; it changed the users' data consumption pattern that was mainly consisted of the text. Therefore, the amount of data that an individual consumes increased significantly. The importance of finding and analyzing practical and necessary data among huge amount of data has arisen. In this study, the current status of Big Data is researched and analyzed and the method to utilize Big Data in the electronic trading field is suggested.