• Title/Summary/Keyword: Electronic control EGR

Search Result 9, Processing Time 0.025 seconds

A Study on the Characteristics of the Electronic EGR Valve for Gasoline Engine (가솔린엔진용 E-EGR 밸브 특성에 관한 연구)

  • Park, Cheol-Woong;Kim, Chang-Gi
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.127-133
    • /
    • 2008
  • Since the 1960's, exhaust gas recirculation(EGR) has been used effectively in spark ignition(SI) engines to control the exhaust emissions of the oxides of nitrogen(NOx). The most important requirements for the application of EGR systems to conventional SI engines are controllable flow rate and good dynamic response. In order to evaluate the characteristics of the electronic EGR valve, a test bench which is consisted of blower, heater, air flow meter and driving unit for electronic EGR valve was set up to simulate engine operating conditions. During the tests, the valve actuation parameters were controlled and the valve lifts and flow rates were measured to infer the characteristics of EGR valve. The results confirmed the capabilities of mathematical analysis and it seems that the correction for the valve lift and potentiometer output is necessary to achieve precise control of EGR rates.

An Exhaust Gas Study of HD Diesel Engine with the Electronic control EGR (전자제어 EGR을 사용한 대형디젤기관의 배출가스연구)

  • Park Kyi-yeol;Oh Yong-suk;Moon Byung-chul
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.76-81
    • /
    • 2006
  • Modem after-treatment technology has been developed variously in order to decrease exhausted emission in diesel engine. However, it seems very difficult to comply with updated stringent emission standards. Specially, it has been many years that exhaust gas from gasoline automobile rather than from diesel is the major object concerned by Korea and other countries, and it is strongly required on the reduction techniques on harmful NOx and PM among those compositions. Thus, this research focused on the electronic control EGR and the target for this research is heavy-duty turbo-diesel engine with EGR technology(High pressure route and low pressure route system).

A Study on the Engine Performance and Emission Characteristics in a LP EGR System with Electronic Throttle Control (ETC를 적용한 저압 EGR시스템의 엔진성능 및 배출가스 특성에 관한 연구)

  • Park, Jun-Heuk;Lim, Jong-Han;Yoon, Jun-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.379-387
    • /
    • 2011
  • Research and development of LP EGR system for the performance improvement and emission reduction on diesel engine is proceeding at a good pace. LP EGR system seems to be helpful method to further reduce$NO_x$ emissions while maintaining PM emissions at a low level because the boost pressure is unchanged while varying EGR rate. This study is experimentally conducted on a 2.0L common rail DI engine at the medium load condition (2000 rpm, BMEP 1.0 MPa, boost pressure 181.3 kPa) that difficult to use large amount of EGR gas because of deteriorations of performance and fuel consumption. And we investigated the characteristics of performance and fuel consumption while varying EGR systems. The overall results using LP EGR system equipped with ETC identified benefits on reduction of PM and improvement of fuel consumption and thermal efficiency while keep the $NO_x$ level compared to HP EGR and LP EGR with back pressure valve.

An usefulness study on estimation and control method of EGR ratio using intake manifold pressure in an gasoline engine (가솔린엔진에서 흡기관 압력을 이용한 EGR율의 추정 및 제어 방법에 관한 유용성 연구)

  • Park, Hyeong-Seon;Yoon, Jun-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.806-813
    • /
    • 2014
  • The EGR system being reburned the part of the exhaust gas through intake system indicates more favorable emission characteristics to reduce NOx in a gasoline engine, but the case of inappropriate exhaust gas quantity induced from engine is fallen engine power caused by unstable combustion. In this study, we examined a method to predict EGR ratio according to various engine operation condition based by intake manifold pressure and confirmed such a prediction data through an experimental method. And after having constituted feedback EGR control algorithm in a base with such a prediction data, we acquired qualitatively similar results by having compared data provided through an EGR feedback control experiment with the data which calculated quantity of residual gas for the engine operation condition. Therefore, the applied algorithm and the system for feedback EGR control showed feasibility applied to real electronic control EGR technology.

A study on the electronic EGR valve control method (전자식 EGR밸브 제어기법에 관한 연구)

  • Choi, Sang-Yun;Lee, Sang-Hun;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.2594-2602
    • /
    • 2014
  • As environmental awareness increases, regulations on exhaust gas of automobile, which is a cause of air pollution, have been strengthened. In order to meet emission regulation, automobile companies and engine manufacturers have actively developed the related technologies. Because the emission control has become severe, the systems using electronic motor or solenoid valve for high precise control are needed. For this reason, it is required not only the optimization of composition of components for improving performance and efficiency of the system but also the development of optimal design technology of electronic control system by securing the designing and manufacturing technology of the components. In this paper, it is proposed the position characteristics for electronic EGR valve module through the applied control logic and experiment results.

An Experimental Study on the Development of E-EGR Valve for Light Duty Diesel Engine (소형 디젤엔진용 E-EGR밸브 개발에 관한 실험적 연구)

  • Song, Chang-Hoon;Woo, Se-Jong;Lee, Jin-Wook;Jeong, Young-Il;Cha, Kyung-Ok
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.928-933
    • /
    • 2001
  • EGR(Exhaust Gas Recirculation) is an effective strategy to control nitrogen oxides emissions from diesel engine. The EGR reduces $NO_x$ through lowering the oxygen concentration in the combustion chamber as well as through heat absorption. However, application of EGR system is difficult because of the penalty in fuel consumption and the increase in particulate matter. The engine used for the experimental was a 3-cylinder 0.8-liter turbo-charged light duty diesel engine with an electronic EGR valve. In this study, experiments were performed at variable vehicle speeds and loads on the chassis dynamometer. To evaluate the exhaust emissions with the EGR system testing was performed using cvs-75 mode test procedure. Results of the cvs-75 mode test achieve sufficiently to meet EURO3 standards.

  • PDF

Development of the low emission gasoline engine (국산 가솔린 엔진용 저배기공해 system에 관한 연구)

  • 성낙원;정용일;우세종
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.16-27
    • /
    • 1986
  • In this study, low emission gasoline engine system is developed utilizing an EGR valve, 3 way catalytic converter and electronic fuel injection system. EGR was controlled by a needle valve and optimized at the engine conditions. Throttle body fuel injection system is used for fueling. When the engine was operated at constant speed by the electronic engine control system with the 3 way catalytic converter, th emissions were reduced by 50 to 90% in volume depending on he engine operating conditions.

  • PDF

Study of Failure Examples for Emission Gas Control System in Gasoline Engine (가솔린 엔진 배출가스 제어장치에 대한 고장사례 고찰)

  • Lee, Il Kwon;Lee, Jong Ho;Lee, Young Suk;Youm, Kwang Wook;han, Jae Oh;Lim, Ha young
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.37-42
    • /
    • 2016
  • The purpose of this paper is to study for the emission gas control of passenger car. The first example, the PCSV never open when operating condition, but it opened by causing malfunction because of trouble. As a result, the purge gas entered into surge tank, a mount of fuel was displayed with excessive supply on tester. Therefore, it certified the bad-condition of the engine when idling by decreasing of fuel injection quantity from engine ECU. The second example, the hose activating a EGR valve didn't supply the vacuum pressure because of assembling the other part. Thus, it knew the bad-condition of engine that the EGR valve would not work normally by leaking with the other port. The third example, as the rear oxygen sensor of two sensor were fault-installing by changing the sensor of other a car it could not detect of oxygen quantity. Finally, it found the phenomenon of abruptly decreasing vehicle speed when braking a car. Therefore, the system including with emission control has to drastically manage by maximizing condition to role decreasing the emission gas.

Development of Real-Time Simulator for a Heavy Duty Diesel Engine (건설기계 디젤엔진용 실시간 시뮬레이터 개발)

  • Noh, Young Chang;Park, Kyung Min;Oh, Byoung Gul;Ko, Min Seok;Kim, Nag In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.203-209
    • /
    • 2015
  • Recently, the portion of electronic control in an engine system has been increasing with the aim of meeting the requirements of emissions and fuel efficiency of the engine system in the construction machinery industry. Correspondingly, the complexity of the engine management system (EMS) has increased. This study developed an engine HiLS system for reducing the cost and time required for function development for the EMS. The engine model for HiLS is composed of air, fuel, torque, and dynamometer models. Further, the mean value method is applied to the developed HiLS engine model. This model is validated by its application to a heavy-duty diesel engine equipped with an exhaust gas recirculation system and a turbocharger. Test results demonstrate that the model has accuracy greater than 90 and also verify the feasibility of the virtual calibration process.