• Title/Summary/Keyword: Electronic Heating

Search Result 512, Processing Time 0.031 seconds

Effects of Temperature and Relative Humidity on the Physical Properties of Electronic Copying Paper (온·습도 조건이 전자 복사용지의 물리적 특성에 미치는 영향)

  • Kang, Kwang-Ho;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.3
    • /
    • pp.70-78
    • /
    • 2012
  • For evaluating the printing suitability of electronic copying papers in the aspect of climate conditions, 12 samples of copying papers being generally used in Korea and worldwide were collected. The copying papers were controlled by various temperature and humidity options in conditioning equipment in order to simulate the specific circumstances of dry, temperate or tropical climate, and the pre-heating system of photocopying machines during printing. As results, some copying papers showed several physical problems, especially in recycled copying papers and a normal paper with original printing faulty. These problems of copying papers were mostly resulted in extremely high moisture circumstance, and in lower levels of tensile strength and tensile stiffness. The moisture contents of copying papers during passing through the pre-heater system of photocopying machine could be rapidly decreased because paper is exposed to high temperature around the pre-heating zone. The copying paper, for example of XR3 sample, containing low moisture contents below 2% had high exfoliating possibility of toner transfer from copying paper.

Study of Phase Transition of Copper(II)-phthalocyanine using a Near Field Scanning Microwave Microscope (근접장 마이크로파 현미경을 이용한 Copper(II)-phthalocyanine의 Phase Transition 연구)

  • Park, Mie-Hwa;Yoo, Hyun-Jun;Yun, Soon-Il;Lim, Eun-Ju;Lee, Kie-Jin;Cha, Deok-Joon;Lee, Young-San
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.6
    • /
    • pp.641-646
    • /
    • 2004
  • We report the changes of the microwave reflection coefficients S$_{11}$ of copper(II)-phthalocyanine (CuPc) thin films by using a near-field microwave microscope(NSMM) in order to understand the phase transition of CuPc. For a NSMM system, a high-quality microstrip resonator coupled with a dielectric resonator was used. CuPc thin films were prepared on the pre-heated glass substrates using a thermal evaporation method. The reflection coefficients S$_{11}$ of CuPc thin films were changed by the dependence on the substrate pre-heating temperatures. By comparing reflection coefficient S$_{11}$ and crystal structures, we found the phase transition of CuPc thin films from $\alpha$-phase to $\beta$-phase at the substrate heating temperature 200 $^{\circ}C$./TEX>.

Mechanical and Electrical properties of MWCNT-added SPB/PVDF composite electrode (MWCNT가 첨가된 SPB/PVDF Composite Electrode의 물리적 및 전기적 특성)

  • Chung, Young-Dong;Kim, Dong-Hun;Shin, Hye-Min;Ha, Kyung-Hwa;Doh, Chil-Hoon;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Kim, Ki-Won;Oh, Dae-Hui
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.512-513
    • /
    • 2007
  • Carbon/polymer based composite electrodes were fabricated by using Super p. Black(SPB) as a conductor and polyvinylidene fluoride (PVDF) as a binder. This type of composite electrode are considered as excellent candidates for heating film and variable resistor applications. Aim of this work is the study of the Mechanical and Electrical properties on composite electrode by the contents of SPB and MWCNT, respectively. The composite electrode having 10~15 wt% of SPB show good electrical and mechanical properties. Mechanical and electrical properties are increased by the addition of MWCNT into the composite electrode.

  • PDF

Electrical Properties of Phase Change Memory Device with Novel GST/TiAlN structure (Novel GST/TiAlN 구조를 갖는 상변화 메모리 소자의 전기적 특성)

  • Lee, Nam-Yeal;Choi, Kyu-Jeong;Yoon, Sung-Min;Ryu, Sang-Ouk;Park, Young-Sam;Lee, Seung-Yun;Yu, Byoung-Gon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.118-119
    • /
    • 2005
  • PRAM (Phase Change Random Access Memory) is well known to use reversible phase transition between amorphous (high resistance) and crystalline (low resistance) states of chalcogenide thin film by electrical Joule heating. In this paper, we introduce a stack-type PRAM device with a novel GST/TiAlN structures (GST and a heating layer of TiAlN), and report its electrical switching properties. XRD analysis result of GST thin film indicates that the crystallization of the GST film start at about $200^{\circ}C$. Electrical property results such as I-V & R-V show that the phase change switching operation between set and reset states is observed, as various input electrical sources are applied.

  • PDF

Residual DC characteristic on Twisted Nematic Liquid Display on the Polyimide Surface by the Thermal Stress (열적 stress에 의한 폴리이미드 표면에서의 TN-LCD의 잔류DC 특성)

  • Bae, Yu-Han;Hwang, Jeoung-Yeon;Kim, Jong-Hwan;Mun, Hyun-Chan;Han, Jung-Min;Kim, Young-Hwan;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.498-501
    • /
    • 2004
  • In this study, the threshold voltage and the response time of thermal stressed TN-LCDs showed the same performances on no thermal stressed TN-LCDs. There was little change of value in TN cells. Also, the transmittances of TN-LCDs on the rubbed PI surface were almost same while increasing thermal stress time. However, the thermal stability of TN cell was decreased by the high thermal stress for the long duration. Residual DC was decreased as the thermal stress increases. Especially, when TN cell was stressed more and more by heating, residual DC was changed a lot. As a result, the residual DC property of LCD in projection TV is affected very much by heating.

  • PDF

A Study on the Energy Consumption Characteristics for Use and Operation Period in Office Buildings (업무용 건물의 용도 및 운전 기간별 에너지 소비 특성 연구)

  • Park, Byung Hun;Kim, Si Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.11
    • /
    • pp.605-611
    • /
    • 2017
  • The purpose of this study is to calculate the energy consumption rate based on data regarding energy use in office buildings, and to confirm the general characteristics of energy consumption. The energy consumption rate of the building is calculated by dividing the energy consumption by the floor area. The energy consumption rate of small-sized office buildings was calculated as $101.48{\sim}201.55kWh/m^2{\cdot}year$ and in the case of medium-sized buildings, the range was $92.77{\sim}177.89kWh/m^2{\cdot}year$. In the case of small buildings, it was found that the energy consumption was $73.24kWh/m^2{\cdot}year$ in electronic device, $34.31kWh/m^2{\cdot}year$ in hot water supply, and $18.37kWh/m^2{\cdot}year$ in heating. In the case of medium-sized buildings, electronic devices was $73.08kWh/m^2{\cdot}year$, lighting was $18.35kWh/m^2{\cdot}year$ and heating, $15.37kWh/m^2{\cdot}year$. In all of the study buildings, the peak heating energy use was observed from 8:00 a.m. to 10:00 a.m during the winter, and the peak power management was required. Energy use at and around the midnight hour is confirmed to be 40~60% of weekly working hours, so it is necessary to manage power use at night time as well as during the day. In order to improve the accuracy of future studies, it is necessary to make efforts to secure the data with standardized energy measuring units for the various type of buildings.

Self Heating Effects in Sub-nm Scale FinFETs

  • Agrawal, Khushabu;Patil, Vilas;Yoon, Geonju;Park, Jinsu;Kim, Jaemin;Pae, Sangwoo;Kim, Jinseok;Cho, Eun-Chel;Junsin, Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.88-92
    • /
    • 2020
  • Thermal effects in bulk and SOI FinFETs are briefly reviewed herein. Different techniques to measure these thermal effects are studied in detail. Self-heating effects show a strong dependency on geometrical parameters of the device, thereby affecting the reliability and performance of FinFETs. Mobility degradation leads to 7% higher current in bulk FinFETs than in SOI FinFETs. The lower thermal conductivity of SiO2 and higher current densities due to a reduction in device dimensions are the potential reasons behind this degradation. A comparison of both bulk and SOI FinFETs shows that the thermal effects are more dominant in bulk FinFETs as they dissipate more heat because of their lower lattice temperature. However, these thermal effects can be minimized by integrating 2D materials along with high thermal conductive dielectrics into the FinFET device structure.

Specific Heat and Thermal Conductivity of XLPE Insulator and Semiconductive Materials for 154kV Power Cable (154kV 전력케이블용 XLPE 절연체와 반도전 재료의 비열 및 열전도)

  • Lee, Kyoung-Yong;Yang, Jong-Seok;Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.19-24
    • /
    • 2005
  • To improve mean-life and reliability of power cable, we have investigated specific heat (Cp) and thermal conductivity of XLPE insulator and semiconductive materials in 154kV underground power transmission cable. Specimens were respectively made of sheet form with EVA, EEA and EBA added 30wt%, carbon black, and the other was made of sheet form by cutting XLPE insulator in 154kV power cable. Specific heat (Cp) and thermal conductivity were· measured by DSC (Differential Scanning Calorimetry) and Nano Flash Diffusivity. Specific-heat measurement temperature ranges of XLPE insulator were from 20[$^{\circ}C$] to 90[$^{\circ}C$], and the heating rate was 1[$^{\circ}C$/min]. And the measurement temperatures of thermal conductivity were 25[$^{\circ}C$}], 55[$^{\circ}C$] and 90[$^{\circ}C$]. In case of semiconductive materials, the measurement temperature ranges of specific heat were from 20[$^{\circ}C$] to 60[$^{\circ}C$], and the heating rate was 1[$^{\circ}C$/min]. And the measurement temperatures of thermal conductivity were 25[$^{\circ}C$] and 55[$^{\circ}C$]. From these experimental results, both specific heat and thermal conductivity were increased by heating rate because volume of materials was expanded according to rise in temperature.

  • PDF

A Study on Integrated Air-conditioning System for Electric Vehicle Based 1-ton Class Commercial Vehicle (전기차 기반의 1톤급 상용차용 통합공조 시스템에 관한 연구)

  • Baek, Soo-Whang;Kim, Chul-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.2
    • /
    • pp.361-368
    • /
    • 2019
  • This paper is a study on integrated air-conditioning system for 1-ton class commercial vehicle based on electric vehicle. In the case of an electric commercial vehicle, since the opening and closing of the door is frequently performed in order to get in and out of the cargo, the heat loss largely occurs. Therefore, the heating and cooling load is required to be larger than the electric vehicle. As a result, the energy consumed by the heating and cooling system is larger than the passenger electric car in order to satisfy the heat comfort required by passengers. In order to overcome these disadvantages, we performed research using an efficient integrated air conditioning system. Finally, the design and analysis of a heat pump system for heating and a electrical compressor for cooling need to be proceed to develop a high-efficiency air conditioning system for improving the commerciality of 1 ton-class electric trucks and expanding the industrial ecosystem in the electric truck sector.

Synthesis of Activated Carbon from Rice Husk Using Microwave Heating Induced KOH Activation

  • Nguyen, Tuan Dung;Moon, Jung-In;Song, Jeong-Hwan;Kim, Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.321-327
    • /
    • 2012
  • The production of functional activated carbon materials starting from inexpensive natural precursors using environmentally friendly and economically effective processes has attracted much attention in the areas of material science and technology. In particular, the use of plant biomass to produce functional carbonaceous materials has attracted a great deal of attention in various aspects. In this study the preparation of activated carbon has been attempted from rice husks via a chemical activation-assisted microwave system. The rice husks were milled via attrition milling with aluminum balls, and then carbonized under purified $N_2$. The operational parameters including the activation agents, chemical impregnation weight ratio of the calcined rice husk to KOH (1:1, 1:2 and 1:4), microwave power heating within irradiation time (3-5 min), and the second activation process on the adsorption capability were investigated. Experimental results were investigated using XRD, FT-IR, and SEM. It was found that the BET surface area of activated carbons irrespective of the activation agent resulted in surface area. The activated carbons prepared by microwave heating with an activation process have higher surface area and larger average pore size than those prepared by activation without microwave heating when the ratio with KOH solution was the same. The activation time using microwave heating and the chemical impregnation ratio with KOH solution were varied to determine the optimal method for obtaining high surface area activated carbon (1505 $m^2$/g).