• Title/Summary/Keyword: Electronic Device

Search Result 4,555, Processing Time 0.034 seconds

High Quality Nano Structured Single Gas Barrier Layer by Neutral Beam Assisted Sputtering (NBAS) Process

  • Jang, Yun-Sung;Lee, You-Jong;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.251-252
    • /
    • 2012
  • Recently, the growing interest in organic microelectronic devices including OLEDs has led to an increasing amount of research into their many potential applications in the area of flexible electronic devices based on plastic substrates. However, these organic devices require a gas barrier coating to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency OLEDs require an extremely low Water Vapor Transition Rate (WVTR) of $1{\times}10^{-6}g/m^2$/day. The Key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required ($1{\times}10^{-6}g/m^2$/day) is the suppression of defect sites and gas diffusion pathways between grain boundaries. In this study, we developed an $Al_2O_3$ nano-crystal structure single gas barrier layer using a Neutral Beam Assisted Sputtering (NBAS) process. The NBAS system is based on the conventional RF magnetron sputtering and neutral beam source. The neutral beam source consists of an electron cyclotron Resonance (ECR) plasma source and metal reflector. The Ar+ ions in the ECR plasma are accelerated in the plasma sheath between the plasma and reflector, which are then neutralized by Auger neutralization. The neutral beam energies were possible to estimate indirectly through previous experiments and binary collision model. The accelerating potential is the sum of the plasma potential and reflector bias. In previous experiments, while adjusting the reflector bias, changes in the plasma density and the plasma potential were not observed. The neutral beam energy is controlled by the metal reflector bias. The NBAS process can continuously change crystalline structures from an amorphous phase to nano-crystal phase of various grain sizes within a single inorganic thin film. These NBAS process effects can lead to the formation of a nano-crystal structure barrier layer which effectively limits gas diffusion through the pathways between grain boundaries. Our results verify the nano-crystal structure of the NBAS processed $Al_2O_3$ single gas barrier layer through dielectric constant measurement, break down field measurement, and TEM analysis. Finally, the WVTR of $Al_2O_3$ nano-crystal structure single gas barrier layer was measured to be under $5{\times}10^{-6}g/m^2$/day therefore we can confirm that NBAS processed $Al_2O_3$ nano-crystal structure single gas barrier layer is suitable for OLED application.

  • PDF

Control of Position of Neutral Line in Flexible Microelectronic System Under Bending Stress (굽힘응력을 받는 유연전자소자에서 중립축 위치의 제어)

  • Seo, Seung-Ho;Lee, Jae-Hak;Song, Jun-Yeob;Lee, Won-Jun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.79-84
    • /
    • 2016
  • A flexible electronic device deformed by external force causes the failure of a semiconductor die. Even without failure, the repeated elastic deformation changes carrier mobility in the channel and increases resistivity in the interconnection, which causes malfunction of the integrated circuits. Therefore it is desirable that a semiconductor die be placed on a neutral line where the mechanical stress is zero. In the present study, we investigated the effects of design factors on the position of neutral line by finite element analysis (FEA), and expected the possible failure behavior in a flexible face-down packaging system assuming flip-chip bonding of a silicon die. The thickness and material of the flexible substrate and the thickness of a silicon die were considered as design factors. The thickness of a flexible substrate was the most important factor for controlling the position of the neutral line. A three-dimensional FEA result showed that the von Mises stress higher than yield stress would be applied to copper bumps between a silicon die and a flexible substrate. Finally, we suggested a designing strategy for reducing the stress of a silicon die and copper bumps of a flexible face-down packaging system.

A Design and Implementation of Process Controller for BMW (Bacteria Mineral Water) Plant (비엠 활성수 플랜트의 공정제어기 설계 및 구현)

  • Lee, Sang-Yun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.2
    • /
    • pp.74-82
    • /
    • 2015
  • In this study, a BMW plant process control system model which produces BMW is suggested and the BMW plant process controller with the following functions is developed. The first function is to operate the electronic overload relays to stop the blower for a certain period of time and to re-operate it again when the blower is overloaded. The second function is to close the motor operated valve automatically in case of power failure to prevent the circulation from the guided tank to the compost throwing tank and to block leak from the compost throwing tank due to the failure of ball valve. The third function is to transfer produced BMW from the concentration tank to 4 storage tanks for automatic managing of the BMW output. A device to measure the signal of the BMW plant process controller and a test equipment are developed. The designed BMW plant process controller is checked to see if it operates correctly according to the design specifications. The sequence control method based on BMW plant process controller is developed at a low cost in this study, so it is expected to bring improvements in the stability and the efficiency of system and to cause reductions in the operation and the management costs in the future.

Image Contrast and Sunlight Readability Enhancement for Small-sized Mobile Display (소형 모바일 디스플레이의 영상 컨트라스트 및 야외시인성 개선 기법)

  • Chung, Jin-Young;Hossen, Monir;Choi, Woo-Young;Kim, Ki-Doo
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.116-124
    • /
    • 2009
  • Recently the CPU performance of modem chipsets or multimedia processors of mobile phone is as high as notebook PC. That is why mobile phone has been emerged as a leading ICON on the convergence of consumer electronics. The various applications of mobile phone such as DMB, digital camera, video telephony and internet full browsing are servicing to consumers. To meet all the demands the image quality has been increasingly important. Mobile phone is a portable device which is widely using in both the indoor and outside environments, so it is needed to be overcome to deteriorate image quality depending on environmental light source. Furthermore touch window is popular on the mobile display panel and it makes contrast loss because of low transmittance of ITO film. This paper presents the image enhancement algorithm to be embedded on image enhancement SoC. In contrast enhancement, we propose Clipped histogram stretching method to make it adaptive with the input images, while S-shape curve and gain/offset method for the static application And CIELCh color space is used to sunlight readability enhancement by controlling the lightness and chroma components which is depended on the sensing value of light sensor. Finally the performance of proposed algorithm is evaluated by using histogram, RGB pixel distribution, entropy and dynamic range of resultant images. We expect that the proposed algorithm is suitable for image enhancement of embedded SoC system which is applicable for the small-sized mobile display.

  • PDF

Nearly single crystal, few-layered hexagonal boron nitride films with centimeter size using reusable Ni(111)

  • Oh, Hongseok;Jo, Janghyun;Yoon, Hosang;Tchoe, Youngbin;Kim, Sung-Soo;Kim, Miyoung;Sohn, Byeong-Hyeok;Yi, Gyu-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.286-286
    • /
    • 2016
  • Hexagonal boron nitride (hBN) is a dielectric insulator with a two-dimensional (2D) layered structure. It is an appealing substrate dielectric for many applications due to its favorable properties, such as a wide band gap energy, chemical inertness and high thermal conductivity[1]. Furthermore, its remarkable mechanical strength renders few-layered hBN a flexible and transparent substrate, ideal for next-generation electronics and optoelectronics in applications. However, the difficulty of preparing high quality large-area hBN films has hindered their widespread use. Generally, large-area hBN layers prepared by chemical vapor deposition (CVD) usually exhibit polycrystalline structures with a typical average grain size of several microns. It has been reported that grain boundaries or dislocations in hBN can degrade its electronic or mechanical properties. Accordingly, large-area single crystalline hBN layers are desired to fully realize the potential advantages of hBN in device applications. In this presentation, we report the growth and transfer of centimeter-sized, nearly single crystal hexagonal boron nitride (hBN) few-layer films using Ni(111) single crystal substrates. The hBN films were grown on Ni(111) substrates using atmospheric pressure chemical vapor deposition (APCVD). The grown films were transferred to arbitrary substrates via an electrochemical delamination technique, and remaining Ni(111) substrates were repeatedly re-used. The crystallinity of the grown films from the atomic to centimeter scale was confirmed based on transmission electron microscopy (TEM) and reflection high energy electron diffraction (RHEED). Careful study of the growth parameters was also carried out. Moreover, various characterizations confirmed that the grown films exhibited typical characteristics of hexagonal boron nitride layers over the entire area. Our results suggest that hBN can be widely used in various applications where large-area, high quality, and single crystalline 2D insulating layers are required.

  • PDF

Multiscale Analysis on Expectation of Mechanical Behavior of Polymer Nanocomposites using Nanoparticulate Agglomeration Density Index (나노 입자의 군집밀도를 이용한 고분자 나노복합재의 기계적 거동 예측에 대한 멀티스케일 연구)

  • Baek, Kyungmin;Shin, Hyunseong;Han, Jin-Gyu;Cho, Maenghyo
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.323-330
    • /
    • 2017
  • In this study, multiscale analysis in which the information obtained from molecular dynamics simulation is applied to the continuum mechanics level is conducted to investigate the effects of clustering of silicon carbide nanoparticles reinforced into polypropylene matrix on mechanical behavior of nanocomposites. The elastic behavior of polymer nanocomposites is observed for various states of nanoparticulate agglomeration according to the model reflecting the degradation of interphase properties. In addition, factors which mainly affect the mechanical behavior of the nanocomposites are identified, and new index 'clustering density' is defined. The correlation between the clustering density and the elastic modulus of nanocomposites is understood. As the clustering density increases, the interfacial effect decreased and finally the improvement of mechanical properties is suppressed. By considering the random distribution of the nanoparticles, the range of elastic modulus of nanocomposites for same value of clustering density can be investigated. The correlation can be expressed in the form of exponential function, and the mechanical behavior of the polymer nanocomposites can be effectively predicted by using the nanoparticulate clustering density.

New techniques for wound management: A systematic review of their role in the management of chronic wounds

  • Bekara, Farid;Vitse, Julian;Fluieraru, Sergiu;Masson, Raphael;De Runz, Antoine;Georgescu, Vera;Bressy, Guillaume;Labbe, Jean Louis;Chaput, Benoit;Herlin, Christian
    • Archives of Plastic Surgery
    • /
    • v.45 no.2
    • /
    • pp.102-110
    • /
    • 2018
  • Debridement is a crucial component of wound management. Recent technologies such as hydrosurgery (Versajet), ultrasound therapy (the MIST therapy device), or plasma-mediated bipolar radio-frequency ablation therapy (Coblation) seem to represent interesting alternatives for wound debridement. The purpose of this systematic review was to describe, evaluate, and compare these three recently developed methods for the management of chronic wounds. In January 2016, an electronic database search was conducted of MEDLINE, PubMed Central, and Embase for articles concerning these three innovative methods for the management of chronic wounds. A total of 389 references were identified by our search strategy, and 15 articles were included. We extracted data regarding the number and age of patients, indications, operating time, number of procedures, costs, wound healing time, decrease in exudation, perioperative blood loss, bacterial load, and the occurrence of complications. The 15 articles included studies that involved 563 patients who underwent hydrosurgery (7 studies), ultrasound therapy (6 studies), or Coblation (2 studies). Six randomized controlled trials were included that compared the use of a scalpel or curette to hydrosurgery (2 studies) or ultrasound therapy (6 studies). Hydrosurgery, in addition to being a very precise and selective tool, allows significantly faster debridement. Ultrasound therapy provides a significant reduction of exudation, and improves the wound healing time. No comparative study dedicated to Coblation was identified. Despite the obvious clinical interest of the topic, our review of the current literature revealed a lack of prospective randomized studies comparing these devices with each other or with standard techniques, particularly for Coblation and hydrosurgery.

A new Clustering Algorithm for the Scanned Infrared Image of the Rosette Seeker (로젯 탐색기의 적외선 주사 영상을 위한 새로운 클러스터링 알고리즘)

  • Jahng, Surng-Gabb;Hong, Hyun-Ki;Doo, Kyung-Su;Oh, Jeong-Su;Choi, Jong-Soo;Seo, Dong-Sun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.2
    • /
    • pp.1-14
    • /
    • 2000
  • The rosette-scan seeker, mounted on the infrared guided missile, is a device that tracks the target It can acquire the 2D image of the target by scanning a space about target in rosette pattern with a single detector Since the detected image is changed according to the position of the object in the field of view and the number of the object is not fixed, the unsupervised methods are employed in clustering it The conventional ISODATA method clusters the objects by using the distance between the seed points and pixels So, the clustering result varies in accordance with the shape of the object or the values of the merging and splitting parameters In this paper, we propose an Array Linkage Clustering Algorithm (ALCA) as a new clustering algorithm improving the conventional method The ALCA has no need for the initial seed points and the merging and splitting parameters since it clusters the object using the connectivity of the array number of the memory stored the pixel Therefore, the ALCA can cluster the object regardless of its shape With the clustering results using the conventional method and the proposed one, we confirm that our method is better than the conventional one in terms of the clustering performance We simulate the rosette scanning infrared seeker (RSIS) using the proposed ALCA as an infrared counter countermeasure The simulation results show that the RSIS using our method is better than the conventional one in terms of the tracking performance.

  • PDF

Analysis of causal factors and physical reactions according to visually induced motion sickness (시각적으로 유발되는 어지럼증(VIMS)에 따른 신체적 반응 및 유발 요인 분석)

  • Lee, Chae-Won;Choi, Min-Kook;Kim, Kyu-Sung;Lee, Sang-Chul
    • Journal of the HCI Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.11-21
    • /
    • 2014
  • We present an experimental framework to analyze the physical reactions and causal factors of Visually Induced Motion Sickness (VIMS) using electroencephalography (EEG) signals and vital signs. We studied eleven subjects who are voluntarily participated in the experiments and conducted online and offline surveys. In order to simulate videos including global motions that could cause the motion sickness, we extracted global motions by optical flow estimation method from hand-held captured video recordings containing intense motions. Then, we applied the extracted global motions to our test videos with action movies and texts. Each genre of video includes three levels of different motions depending on its intensity. EEG signal and vital sign that were measured by a portable electrocorticography device and an electronic monometer in real time while the subjects watch the videos including ones with the extracted motions. We perform an analysis of the EEG signals using Distance Map(DM) calculated by correlation among each channel of brain signal. Analysis using the vital signs and the survey results is also performed to obtain relationship between the VIMS and causal factors. As a result, we clustered subjects into three groups based on the analysis of the physical reaction using the DM and the correlation between vital sign and survey results, which shows high relationships between the VIMS and the intensity of motions.

Potential barrier height of Metal/SiC(4H) Schottky diode (Metal/SiC(4H) 쇼트키 다이오드의 포텐셜 장벽 높이)

  • 박국상;김정윤;이기암;남기석
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.640-644
    • /
    • 1998
  • We have fabricated Sb/SiC(4H) Schottky barrier diode (SBD) of which characteristics compared with that of Ti/SiC(4H) SBD. The donor concentration of the n-type SiC(4H) obtained by capacitance-voltage (C-V) measurement was about $2.5{\times}10 ^{17}{\textrm}cm^{-3}$. The ideality factors of 1.31 was obtained from the slope of forward current-voltage (I-V) characteristics of Sb/SiC(4H) SBD at low current density. The breakdown field of Sb/SiC(4H) SBD under the reverse bias voltage was about $4.4{\times}10^2V$/cm. The built-in potential and the Schottky barrier height (SBH) of Sb/SiC(4H) SBD were 1.70V and 1.82V, respectively, which were determined by the analysis of C-V characteristics. The Sb/SiC(4H) SBH of 1.82V was higher than Ti/SiC(4H) SBH of 0.91V. However, the current density and reverse breakdown field of Sb/SiC(4H) were low as compared with those of Ti/SiC(4H). The Sb/SiC(4H), as well as the Ti/SiC(4H), can be utilized as the Shottky barrier contact for the high-power electronic device.

  • PDF