• Title/Summary/Keyword: Electron-transfer

Search Result 1,056, Processing Time 0.021 seconds

A Study on Charge Transfer Complexes of 1,2,3,4-Tetrahydrocarbazole and Some Derivatives with Chloranil (1,2,3,4-테트라하이드로카바졸 및 그 유도체들과 클로라닐의 전하이동 착물에 관한 연구)

  • Seong-Bae Moon;Jung-Dae Moon
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.11
    • /
    • pp.929-936
    • /
    • 1993
  • Charge transfer complexes of some electron donors with one electron acceptor have been studied to investigate the maximum absorption wavelength and absorbance by UV-Vis spectrometer in three kinds of solvents, such as ethylene chloride, methylene chloride, and chloroform, at the temperature ranges of 16∼25$^{\circ}$C. 1,2,3,4-Tetrahydrocarbazole (THC), 2-methyl, 3-methyl, and 3-ethyl THC were selected as electron donors while chloranil was used as an electron acceptor in this study. It is found that these complexes forms 1 : 1 complexes, and their maximum absorbance and formation constants decreases with respect to the function of the polarity of solvent and temperature. The polarity of solvents and the temperature have been influenced on the formation constants, which were described using the thermodynamic properties. Moreover, the electronic and steric effects of electron donors have also been effects.

  • PDF

NECESSITY OF READY ELECTRON DISPOSAL AND INTERSPECIES HYDROGEN TRANSFER FOR THE UTILIZATION OF ETHANOL BY RUMEN BACTERIA

  • Hino, T.;Mukunoki, H.;Imanishi, K.;Miyazaki, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.3
    • /
    • pp.511-517
    • /
    • 1992
  • Ethanol was utilized by mixed rumen microbes, but addition of pentachlorophenol (25 mg/l), a methanogen inhibitor, suppressed the utilization of ethanol. Carbon monoxide (50% of the gas phase), a hydrogenase inhibitor, more strongly suppressed the utilization of ethanol, propanol, and butanol. These results suggest that the major ethanol utilizers are $H_2$ producers. Ethanol utilization was depressed at low pH (below 6.0). Since methanogens were shown to be relatively resistant to low pH, it appears that ethanol utilizers are particularly sensitive to low pH. Ruminococcus albus and R. flavefaciens in mono-culture produced ethanol from carbohydrate (glucose and cellobiose), even when a high level (170 mM) of ethanol was present. Ethanol was not utilized even in the absence of carbohydrate, but the co-culture of these bacteria with methanogens resulted in the utilization of ethanol, i.e., when $H_2$ was rapidly converted to $CH_4$, R. albus and R. flavefaciens utilized ethanol. These results suggest that ethanol is utilized when the electrons liberated by the oxidation of ethanol are rapidly removed, and ready electron disposal in ethanol-utilizing, $H_2$-producing bacteria is accomplished by the interspecies transfer of $H_2$.

Surface Charge Transfer of Self-Assembled Viologen Derivative Using Quartz Crystal Microbalance (수정진동자를 이용한 자기조립된 Viologen 유도체의 계면전하이동 특성)

  • Park, Sang-Hyun;Ryu, Kil-Yong;Lee, Dong-Yun;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.256-257
    • /
    • 2005
  • We fabricated self-assembled monolayers(SAMs) onto quartz crystal microbalance(QCM) using viologen, which has been widely used as electron acceptor and electron transfer mediator. The viologen derivative exist in three redox states, namely. These redox reactions are highly reversible and can be cycled many times without significant side reactions, respectively. We studied the characteristics of charge transfer using different electrolyte solutions by electrochemical quartz crystal microbalance (EQCM). From the data, the redox peak currents were nearly equal charges during redox reaction and existed to an excellent linear interrelation between the scan rates and first redox peak currents. The redox reactions of viologen were highly reversible and the EQCM has been employed to monitor the electrochemically induced adsorption of SAMs during the redox reactions.

  • PDF

Estimation of Energetic and Charge Transfer Properties of Iridium(III) Bis(2-phenylpyridinato-N,C2')acetylacetonate by Electrochemical Methods

  • Cha, Joeun;Ko, Eun-Song;Shin, Ik-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.96-100
    • /
    • 2017
  • Iridium(III) bis(2-phenylpyridinato-$N,C^{2^{\prime}}$)acetylacetonate ($(ppy)_2Ir(acac)$), a green dopant used in organic light-emitting devices (OLEDs), was subjected to electrochemical characterization to estimate its formal oxidation potential ($E^{o^{\prime}}$), HOMO energy level ($E_{HOMO}$), electron transfer rate constant ($k^{o^{\prime}}$), and diffusion coefficient ($D_o$). The employed combination of voltammetric methods, i.e., cyclic voltammetry (CV), chronocoulometry (CC), and the Nicholson method, provided meaningful insights into the electron transfer kinetics of $(ppy)_2Ir(acac)$, allowing the determination of $k^{o^{\prime}}$ and $D_o$. The quasi-reversible oxidation of $(ppy)_2Ir(acac)$ furnished information on $E^{o^{\prime}}$ and $E_{HOMO}$, allowing the latter parameter to be easily estimated by electrochemical methods without relying on expensive and complex ultraviolet photoemission spectroscopic (UPS) measurements.

Synthesis, Photophysical and Electrochemical Properties of Novel Conjugated Donor-Acceptor Molecules Based on Phenothiazine and Benzimidazole

  • Zhang, Xiao-Hang;Kim, Seon-Ho;Lee, In-Su;Gao, Chun-Ji;Yang, Sung-Ik;Ahn, Kwang-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1389-1395
    • /
    • 2007
  • Two series of new organic fluorophores such as asymmetrical 3-(benzimidazol-2-yl)-10-hexylphenothiazine derivatives 1 and symmetrical 3,7-bis(benzimidazol-2-yl)-10-hexylphenothiazine derivatives 2 have been synthesized. Electronic absorption, fluorescence, and electrochemistry measurements reveal that the electron withdrawing benzimidazole subunit directly connected to the phenothiazine core facilitates the charge transfer characters which were also verified by the theoretical calculations. Various substituents on the benzimidazole moieties can allow a fine-tuning of the LUMO energy levels of the molecules without significantly affecting the HOMO energy levels. The method provides a new route for designing ambipolar molecules whose energy levels are well-matched with the Fermi levels of the electrodes to facilitate the electron or hole injection/transfer in OLED devices.

Electrochemical Study on the 3-Phenyl-4-Nitrosydnone (3-Phenyl-4-Nitrosydnone의 전기화학적 연구)

  • Il-Kwang Kim;Youn-Geun Kim;Soon-Jong Han
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.195-202
    • /
    • 1988
  • An electrochemical reduction on the 3-phenyl-4-nitrosydnone in acetonitrile solution has been studied by direct current, differential pulse polarography, cyclic voltammetry and controlled potential coulometry. Before the cleavage of phenyl-N single bond a irreversible electron transfer-chemical reaction(EC) mechanism of nitro functional group proceeded to form amino (or-hydroxylamino) group by multielectron transfer which is followed to give phenyl hydrazine by single electron transfer-chemical reaction at the 2nd and 3rd irreversible reduction wave of high negative potential region. The cathodic half-wave potentials shown to be shift negative due to inhibitory effect of cetyl-trimethyl ammonium bromide micelle while reversible anodic peaks on the 2nd and 3rd reduction waves in the presence of NaLS at high negative potential region.

  • PDF

Study of the Nonstoichiometry and Physical Properties of the$Nd_{1-x}Sr_xFeO_{3-y}$ System

  • Chul Hyun Yo;Hyung Rak Kim;Kwang Hyun Ryu;Kwon Sun Roh;Jin Ho Choy
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.8
    • /
    • pp.636-640
    • /
    • 1994
  • The nonstoichiometric perovskite solid solutions of the $Nd_{1-x}Sr_xFeO_{3-y}$ system for the compositions of x=0.00, 0.25, 0.50, 0.75, and 1.00 have been prepared at $1150^{\circ}C$ in the air pressure. The compound of x=0.00, NdFe$O_{3.0}$, contains only $Fe^{3+}$ ion in octahedral site and the others involves the mixed valence state between $Fe^{3+}$ and $Fe^{4+}$ ions. The mole ratio of $Fe^{4+}$ ion or the ${\tau}$-value increases steadily with the x-value and then is maximized at the compositionof x= 1.00. The nonstoichiometric chemical formulas of the system are formulated from the x, ${\tau}$ and y values. From the Mossbauer spectroscopy, the isomer shift of $Fe^{3+}$ ion decreases with the increasing x-value, which is induced by the electron transfer between the$Fe^{3+}$ and $Fe^{4+}$ ions. The transfer is made possible by the indirect interaction between $Fe^{3+}$ and$Fe^{4+}$ ions via the oxygen ion. The eg electrons of the$Fe^{3+}$ ions are delocalized over all the Fe ions. Due to the electron transfer, the activation energy of electrical conductivity is decrease with the increasing amount of $Fe^{4+}$ ion.

Decal Method with High Catalyst Transfer Ratio and Its Performance in PEMFC

  • Park, Hyun-Seo;Cho, Yong-Hun;Cho, Yoon-Hwan;Sung, Yung-Eun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.169-171
    • /
    • 2007
  • A breaking layer was introduced to conventional decal transfer method in membrane electrolyte assembly fabrication for high catalyst transfer ratio. In this study, the modified decal transfer method with high catalyst transfer ratio was introduced and its performance is studied. The structural features of electrodes made by decal method were investigated using scanning electron microscopy and current-voltage polarization measurement.

  • PDF