• Title/Summary/Keyword: Electron-beam treatment

Search Result 280, Processing Time 0.029 seconds

Advanced Optical and Electrical Properties of TIO Thin Films by Thermal Surface Treatment of Electron Beam Irradiation (전자빔 열 표면처리에 따른 TIO 박막의 투명전극 특성 개선 효과)

  • Yeon-Hak Lee;Min-Sung Park;Daeil Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.4
    • /
    • pp.193-197
    • /
    • 2023
  • Transparent and conducting titanium (Ti) doped indium oxide (TIO) thin films were deposited on the poly-imide (PI) substrate with radio frequency magnetron sputtering and then electron irradiation was conducted on the TIO film's surface to investigate the effect electron irradiation on the crystallization and opto-electrical properties of the films. All x-ray diffraction (XRD) pattern showed two diffraction peaks of the In2O2 (431) and (444) planes with regardless of the electron beam irradiation energy. In the AFM analysis, the surface roughness of as deposited films was 3.29 nm, while the films electron irradiated at 700 eV, show a lower RMS roughness of 2.62 nm. In this study, the FOM of as deposited TIO films is 6.82 × 10-3 Ω-1, while the films electron irradiated at 500 eV show the higher FOM value of 1.0 × 10-2 Ω-1. Thus, it is concluded that the post-deposition electron beam irradiation at 500 eV is the one of effective methods of crystallization and enhancement of opto-electrical performance of TIO thin film deposited on the PI substrate.

Developmental inhibition of Drosophila suzukii by ionizing radiation

  • KIM, Junheon;KIM, Jeongmin;LEE, Yeon Jeong;PARK, Chung Gyoo
    • Entomological Research
    • /
    • v.48 no.5
    • /
    • pp.331-338
    • /
    • 2018
  • Spotted wing drosophila (SWD) has emerged as a major invasive insect pest of small berry fruits in the Americas and Europe since the late 2000s. Thus, phytosanitary treatment of commodities for export is imperative to prevent the movement of viable SWD to newer areas. In the present study, all developmental stages of SWD were irradiated with different doses of gamma and electron beam radiation to assess developmental inhibition to identify potential quarantine doses of the radiations. Ionizing radiation induced developmental inhibition of all stages of SWD. The effective doses for 99% inhibition ($ED_{99}$) of hatching, pupariation, and adult emergence from irradiated eggs for gamma radiation were 882, 395 and 39 Gy, respectively, compared with 2849, 687, and 41 Gy, respectively, for electron beam radiation. The $ED_{99}$ for inhibition of pupariation and adult emergence in irradiated larvae were 703 and 47 Gy, respectively, for gamma radiation, and 619 and 33 Gy, respectively, for electron beam radiation. Pupal irradiation did not completely inhibit adult emergence, even at 300 Gy. However, irradiation with ${\geq}100Gy$ of puparia induced adult sterility, with no egg production at all. The $ED_{99}$ for inhibition of $F_1$ egg hatchability from adults irradiated with gamma radiation and electron beam radiation was estimated to be 424 and 125 Gy, respectively. The results of the present study suggest that gamma radiation and electron beam radiation are alternatives for phytosanitary treatment. Irradiation with 100 Gy could be suggested as a potential dose for egg, larval, and pupal quarantine treatment of SWD.

A Study on the Properties of TiN Films by Using Electron Beam Irradiation (전자-빔 조사를 이용한 TiN 박막의 물성변화에 관한 연구)

  • Shin, C.H.;Sung, Y.J.;Lim, S.Y.;Shin, G.W.;Jeong, C.W.;Kim,, S.K.;Kim, J.H.;You, Y.Z.;Kim, Dae-Il
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.1
    • /
    • pp.29-33
    • /
    • 2010
  • Titanium nitride (TiN) films were deposited on the polycarbonate substrate by using radio frequency (RF) magnetron sputtering without intentional substrate heating. After deposition, the films were bombarded with intense electron beam for 20 minutes. The intense electron irradiation impacts on the crystalline, hardness and surface roughness of the TiN films. The films irradiated with an electron beam of 300 eV show the small grains on the surface, while as deposited TiN films did not showany grains on the surface. Also the surface harness evaluated with micro indenter was increased up to 18 Gpa at electron energy of 900 eV after electron beam irradiation. In addition, surface root mean square (RMS) roughness of the films irradiated with intense electron beam affected strongly. The films irradiated by electron beam with 900 eV have the lowest roughness of 1.2 nm in this study.

Monte Carlo Simulation of Irradiation Treatment of Peaches (Prunus persica L. Batsch) (몬테카를로 시뮬레이션을 이용한 복숭아의 방사선 조사)

  • Kim, Jongsoon;Kim, Dong-Hyun;Park, Jong-Min;Choi, Won-Sik;Kwon, Soon Hong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.6
    • /
    • pp.337-344
    • /
    • 2018
  • Food irradiation is important not only in ensuring safety but also improving antioxidant activity of peaches. Our objective was to establish the best irradiation treatment for peaches by calculating dose distribution using Monte Carlo simulation. 3-D geometry and component densities of peaches, extracted from CT scan, were entered into MCNP to obtain simulated dose distribution. Radiation energies for electron beam were 1.35 MeV (low energy) and 10 MeV (high energy). Co (1.25 MeV) and the Husman irradiator, containing three sealed Cs source rods in an annular array, were used for gamma irradiation. At 1.35 MeV electron beam simulation, electrons penetrated well beyond the peach skin, enough for surface treatment for microorganisms and allergens. At 10 MeV electron beam simulation, for top-beam only treatment, doses at the core were the highest and for double beam treatment, the electron energy was absorbed by the entire sample. At Co source, the radiation doses were presented on the whole area. At Cs source, the dose uniformity ratios were 2.78 for one source and 1.48 for three ones at 120 degrees interval. Proper control of irradiation treatment is critical to establish confidence in the irradiation process.

Measurement of Secondary Electron Emission Coefficient and Bimolecular Valence Band Energy Structure of Erythrocyte with and Without Bioplasma Treatment

  • Lee, Jin-Young;Baik, Guyon;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.483-483
    • /
    • 2012
  • Recently, nonthermal bioplasma has been attracted by researchers due to their potentials to modulate cellular functions resulting in changes of biomolecular electron band structures as well as cell morphologies. We have investigated the secondary electron emission characteristics from the surface of the erythrocyte, i.e., red blood cell (RBC) with and without the nonthermal bioplasma treatment in morphological and biomolecular aspects. The morphologies have been controlled by osmotic pressure and biomolecular structures were changed by well known reactive oxygen species. Ion-induced secondary electron emission coefficient have been measured by using gamma-focused ion beam (${\gamma}$-FIB) system, based on the quantum mechanical Auger neutralization theory. Our result suggests that the nonthermal bioplasma treatment on biological cells could result in change of the secondary electron emission coefficient characterizing the biomolecular valence band electron energy structures caused by the cell morphologies as well as its surface charge distributions.

  • PDF

Changes of SDS-PAGE Pattern of Pork Myofibrillar Proteins Induced by Electron Beam Irradiation

  • Whang Key;Jeong, Dong-Kwan;Kim, Hyuk-Il
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.4
    • /
    • pp.378-381
    • /
    • 2005
  • Actin and myosin solutions and fresh ground pork were irradiated with the electron beam (e-beam) at a dose of 0, 1.5, 3.0, 5.0 and 10 kGy. The changes in SDS-PAGE pattern of 2 proteins and the salt-soluble proteins extracted from ground pork after e-beam irradiation were monitored. When the myosin solution was irradiated with e-beam, myosin was degraded completely. Complete myosin degradations were observed even with the lowest dose (1.5 kGy) of e-beam treatment. Actin was degraded with the irradiation, but to a less extent than myosin was. The degradation of actin increased as the e-beam treatment increased from 1.5 to 10.0 kGy. Among the salt-soluble proteins extracted from ground pork, myosin was degraded gradually when the e-beam dose increased from 1.5 up to 10.0 kGy. Similar gradual increase in the degradation of actin also occurred with the increase of irradiation. Increases of 2 low molecular weight compounds (<29 kDa) were observed when the irradiation dose increased from 1.5 to 10.0 kGy. These 2 molecules are thought to be the breakdown products produced from the degradation of major salt-soluble proteins, myosin and actin. The salt-soluble protein content of ground pork did not change with the e-beam irradiation.

Cellulose-based carbon fibers prepared using electron-beam stabilization

  • Kim, Min Il;Park, Mi-Seon;Lee, Young-Seak
    • Carbon letters
    • /
    • v.18
    • /
    • pp.56-61
    • /
    • 2016
  • Cellulose fibers were stabilized by treatment with an electron-beam (E-beam). The properties of the stabilized fibers were analyzed by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The E-beam-stabilized cellulose fibers were carbonized in N2 gas at 800℃ for 1 h, and their carbonization yields were measured. The structure of the cellulose fibers was determined to have changed to hemicellulose and cross-linked cellulose as a result of the E-beam stabilization. The hemicellulose decreased the initial decomposition temperature, and the cross-linked bonds increased the carbonization yield of the cellulose fibers. Increasing the absorbed E-beam dose to 1500 kGy increased the carbonization yield of the cellulose-based carbon fiber by 27.5% upon exposure compared to untreated cellulose fibers.

Effect of Electron Irradiation on the Surface Hardness and Wear Characteristic of CrAlN Thin Film Deposited on the SKD61 Mold Steel (전자빔 조사에 따른 CrAlN/SKD61의 표면경도 및 내마모도 개선효과)

  • Eom, Tae-Young;Song, Young-Hwan;Choi, Su-Hyun;Choi, Jin-Young;Heo, Sung-Bo;Kim, Jun-Ho;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.4
    • /
    • pp.164-168
    • /
    • 2017
  • Intense electron beam was irradiated on the CrAlN thin films deposited in SKD61 under different incident energies and then the effect of electron beam irradiation on the enhancement of surface hardness and wear resistance was investigated. Surface hardness and wear resistance of the CrAlN films is increased proportionally with the electron beam energy. While the surface hardness of as deposited CrAlN film is Hv ($0.1g{\cdot}f$) 450, the hardness oflectron irradiated (600 eV) film is Hv ($0.1g{\cdot}f$) 2050. The width of wear track of the untreated SKD61 is $X\_{\mu}m$, while the track-width of the electron irradiated CrAlN (600 eV) film is $787{\mu}m$, respectively. From the observed results, it is supposed that the optimal electron beam irradiation can be one of the useful surface treatment technologies for the enhancement of surface hardness and wear resistance of CrAlN/SKD61, simultaneously.

Effect of Electron Beam Irradiation on Microbial Growth and Qualities in Astragalus membranaceus

  • Jin, You-Young;Shin, Hee-Young;Ku, Kyoing-Ju;Song, Kyung-Bin
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.4
    • /
    • pp.176-179
    • /
    • 2006
  • Electron beam irradiation was applied to examine the microbial growth and qualities of vacuum-packaged Astragalus membranaceus, a Korean medicinal herb. Samples were irradiated at dose of 2, 4, 8, 12, and 16 kGy, respectively. Microbiological data on A. membranaceus showed that populations of total bacteria, yeast and mold, total coliforms were significantly reduced with increase of irradiation dose. Populations of microorganisms in A. membranaceus were decreased by 2-3 log cycles at 8 kGy irradiation. Color measurements showed that electron beam treatment caused negligible changes in Hunter color L, a, and b values of A. membranaceus. Sensory evaluations showed that there were no significant changes among the samples. These results suggest that electron beam irradiated A. membranaceus have better microbial safety and qualities, compared with the non-irradiated control.

Fabrication of carbon nanostructures using electron beam lithography and pyrolysis for biosensing applications (전자빔 리소그래피와 열처리를 이용한 탄소 나노구조물의 제작 및 바이오센싱 응용연구)

  • Lee, Jung-A;Lee, Kwang-Cheol;Park, Se-Il;Lee, Seung-S.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1727-1732
    • /
    • 2008
  • We present a facile, yet versatile carbon nanofabrication method using electron beam lithography and resist pyrolysis. Various resist nanopatterns were fabricated using a negative electron beam resist, SAL-601, and were then subjected to heat treatment in an inert atmosphere to obtain carbon nanopatterns. Suspended carbon nanostructures were fabricated by wet-etching of an underlying sacrificial oxide layer. Free-standing carbon nanostructures, which contain 122 nm-wide, 15 nm-thick, and 2 ${\mu}m$-long nanobridges, were fabricated by resist pyrolysis and nanomachining processes. Electron beam exposure dose effects on resist thickness and pattern widening were studied. The thickness of the carbon nanostructures was thinned down by etching with oxygen plasma. An electrical biosensor utilizing carbon nanostructures as a conducting channel was studied. Conductance modulations of the carbon device due to streptavidin-biotin binding and pH variations were observed.

  • PDF