• 제목/요약/키워드: Electron-beam lithography

검색결과 168건 처리시간 0.034초

광결정 도파로용 나노 마스터 제작 (Nano-master fabrication for photonic crystal waveguides)

  • 최춘기;한상필;정명영
    • 한국진공학회지
    • /
    • 제12권4호
    • /
    • pp.288-292
    • /
    • 2003
  • Air hole 구조를 갖는 2차원 고분자 광결정 도파로를 나노 임프린트 방법으로 제작하기 위하여, e-beam lithography와 ICP etching 공정을 이용하여 기둥 구조를 갖는 실리콘 나노 마스터를 제작하였다. Air hole 구조를 갖는 광결정 구조를 얻기 위해, 실리콘 마스터 기둥의 형태를 4각형, 6각형, 12각형 및 원으로 설계하였다. 제작된 기둥의 직경과 구조를 CD-SEM과 SPM-AFM을 이용하여 측정하였으며, dose가 432 $\mu$C/$\textrm{cm}^2$일 때 최적의 dose임을 확인하였다.

대면적 SPL(Scanning Probe Lithography) 시스템 제작 (Manufacturing of SPL system having a large scanning area)

  • 윤상준;김원효;성우경;박영근;황규호;정관수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.699-702
    • /
    • 2004
  • Next generation lithography technologies, such as EBL(Electron Beam Lithography), X-ray lithography, SPL(Scanning Probe Lithography), have been studied widely for getting over line width limitation of photolithography. Among the next generation lithography technologies, SPL has been highlighted because of its high resolution advantage. But is also has problem which are slow processing time and sample size limitation. The purpose of this study is complement of present SPL system. Brand new SPL system was made. SPL test was performed with the system in ultra thin PMMA(polymethlymethacrylate) film.

  • PDF

Metal Powder에 따른 증기화 증폭 시트의 개발을 통한 열 중량 분석 및 고출력 전자빔의 가공 특성 분석 (Analysis of machining characteristics of thermogravimetric analysis and high-power density electron beam through the development of vaporized amplification sheets according to metal powder)

  • 김현정;정성택;이주형;백승엽
    • Design & Manufacturing
    • /
    • 제14권1호
    • /
    • pp.56-62
    • /
    • 2020
  • An electron beam was used to mainly utilize for polishing, finishing, welding, a lithography process, etc. Due to the high technical level of difficulty of high-power density electron beam, it is difficult to secure related technologies. In this study, research was carried out to improve the machinability by developing the vaporized amplification sheets to realize the electron beam drilling technology. Their vaporized amplification sheets were analyzed by using the measurement of chemical and composition, which is such as TGA, SEM. We analyzed micro-hole processing using a microscope. Also, the thermal characteristics of vaporized amplification sheets are highly significant for applying to high-power density electron beam technique. So, we finished the vaporized amplification sheets according to the process conditions and analyzed it according to the machining conditions of the electron beam. It was confirmed that the effect on the experimental results differs depending on the influence of the metal powder contained in the developed material.

50nm급 불연속 나선형 패턴의 마스터 제작 (Fabrication of Master for a Spiral Pattern in the Order of 50nm)

  • 오승훈;최두선;제태진;정명영;유영은
    • 한국정밀공학회지
    • /
    • 제25권4호
    • /
    • pp.134-139
    • /
    • 2008
  • A spirally arrayed nano-pattern is designed as a model pattern for the next generation optical storage media. The pattern consists off types of embossed rectangular dot, which are 50nm, 100nm, 150nm and 200nm in length and 50nm in width. The height of the dot is designed to be 50nm. The pitch of the spiral track of the pattern is 100nm. A ER(Electron resist) master for this pattern is fabricated by e-beam lithography process. The ER is first spin-coated to be 50nm thick on a Si wafer and then the model pattern is written on the coated ER layer by e-beam. After developing this pattern written wafer in the solution, a ER pattern master is fabricated. The most conventional e-beam machine can write patterns in orthogonal way, so we made our own pattern generator which can write the pattern in circular or spiral way. This program generates the patterns to be compatible with the e-beam machine from Raith(Raith 150). To fabricate 50nm pattern master precisely, a series of experiments were done including the design compensation for the pattern size, optimization of the dose, acceleration voltage, aperture size and developing. Through these experiments, we conclude that the higher accelerating voltages and smaller aperture size are better for mastering the nano pattern which is in order of 50nm. With the optimized e-beam lithography process, a spiral arrayed 50nm pattern master adopting PMMA resist was fabricated to have dimensional accuracy over 95% compared to the designed. Using this pattern master, a metal pattern stamp will be fabricated by Ni electro plating for injection molding of the patterned plastic substrate.

Measurement of electron temperature and density using Stark broadening of the coaxial focused plasma for extreme ultraviolet (EUV) lithography

  • Lee, Sung-Hee;Hong, Young-June;Choi, Eun-Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.475-475
    • /
    • 2010
  • We have generated Ar plasma in dense plasma focus device with coaxial electrodes for extreme ultraviolet (EUV) lithography and investigated an emitted visible light for electro-optical plasma diagnostics. We have applied an input voltage 4.5 kV to the capacitor bank of 1.53 uF and the diode chamber has been filled with Ar gas of pressure 8 mTorr. The inner surface of the cylindrical cathode has been attatched by an acetal insulator. Also, the anode made of tin metal. If we assumed that the focused plasma regions satisfy the local thermodynamic equilibrium (LTE) conditions, the electron temperature and density of the coaxial plasma focus could be obtained by Stark broadening of optical emission spectroscopy (OES). The Lorentzian profile for emission lines of Ar I of 426.629 nm and Ar II of 487.99 nm were measured with a visible monochromator. And the electron density has been estimated by FWHM (Full Width Half Maximum) of its profile. To find the exact value of FWHM, we observed the instrument line broadening of the monochromator with a Hg-Ar reference lamp. The electron temperature has been calculated using the two relative electron density ratios of the Stark profiles. In case of electron density, it has been observed by the Stark broadening method. This experiment result shows the temporal behavior of the electron temperature and density characteristics for the focused plasma. The EUV emission signal whose wavelength is about 6 ~ 16 nm has been detected by using a photo-detector (AXUV-100 Zr/C, IRD). The result compared the electron temperature and density with the temporal EUV signal. The electron density and temperature were observed to be $10^{16}\;cm^{-3}$ and 20 ~ 30 eV, respectively.

  • PDF

전자선 묘화를 이용한 장파장 DFB-LD용 격자 구조의 제작 및 특성 분석 (Fabrication & Characterization of Grating Structures for Long Wavelength DFB-LD Using Electron Beam Lithography)

  • 송윤규;김성준;윤의준
    • 전자공학회논문지A
    • /
    • 제32A권1호
    • /
    • pp.200-205
    • /
    • 1995
  • The 1st and 2nd-order grating structure for long wavelength DFB(Distributed FeedBack) laser diodes are successfully fabricated on InP substrates by using electron beam lithography and reactive ion etch techniques, and also characterized non-destructively by diffraction analysis without removal of photo-resis layer. A new composite layer made by lifted-off Cr layer on thin SiO2 film is developed and used as an etch mask, because PMMA, the e-beamresist, is unsuitable for reactive ion etch of InP. In addition, it is experimentally confiremed that diffraction analysis makes it possible to predict the grating parameters, and the analysis can be used as a non-destructive on-line test to prevent incomplete gratings from being successively processed.

  • PDF

경 엑스선 존 플레이트(Zone Plate) 설계 및 제작 (Design and Fabrication of Hard X-ray Zone Plate)

  • 천권수
    • 한국방사선학회논문지
    • /
    • 제4권3호
    • /
    • pp.27-31
    • /
    • 2010
  • 엑스선 영상의 공간분해능은 영상획득 장치에 사용되는 광학소자의 성능에 의해 결정된다. 8.5keV에서 높은 공간분해능 달성이 가능한 존 플레이트를 설계하였다. 방사광을 이용하는 대신 엑스선 튜브를 사용하는 영상시스템에서는 80nm의 공간분해능을 달성할 수 있음을 광선추적 기법을 이용하여 예측하였다. 전자빔 석판인쇄술을 이용하여 최외곽 폭 40nm를 갖는 존 플레이트가 제작하였다.

전자빔 리토그라피에서 스트링모델을 이용한 3차원 리지스트 프로파일 시뮬레이션 (3-D resist profile simulation using string model on E-beam lithography)

  • 서태원;함영목;전국진;이종덕
    • 전자공학회논문지A
    • /
    • 제33A권6호
    • /
    • pp.144-150
    • /
    • 1996
  • The purpose of this paper is to develop a simulation program to predict resist prifile in electron-beam lithography, where the main issue is proximity effect. The simualtion program composes of monte-carlo simulation, exposure simulation and development simulation. In nonte-carlo simulation, the absorbed energy in the resist is calculated when one electron is incident into resist, using hybrid model on the basis of the rutherford differential scattering cross section and moller theory. In exposure simulation, the absorbed energy in the resist is calculated when electrons are incident in exposure pattern. In the program, the developed profile depending on time is obtained by string model. The 0.2$\mu$m and the 0.3$\mu$m line and space patterns are experimentally delineated and compared to the simulation results to check the relevance of the program.

  • PDF