• Title/Summary/Keyword: Electron-Beam

Search Result 2,207, Processing Time 0.032 seconds

Improvement in Dissolution of Cellulose with Ionic liquid by the Electron Beam Treatment (이온성 액체의 셀룰로오스 용해성 개선을 위한 전자빔 처리 효과)

  • Lee, Won-Sil;Jung, Wong Gi;Sung, Yong Joo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.2
    • /
    • pp.56-65
    • /
    • 2013
  • Electron beam treatment was applied for improving dissolution of cellulose with ionic liquids. Two ionic liquids, 1-allyl-3-methylimidazolium chloride ([Amim]Cl]: AC) and 1,3-dimethylimidazolium methylphosphite ([Dmim][$(MeO)(H)PO_2$]: Me) were used for this experiment. Treatment with electron beams up to dose of 400 kGy resulted in the increase of hot water extract and alkali extract of cotton pulp and the great reduction in the molecular weight of cellulose. For the dissolution of cotton pulp with two ionic liquids, the electron beam treated samples showed faster dissolution. The dissolved cellulose with Me ionic liquid were regenerated with acetonitrile and the structure of regenerated cellulose showed distinct difference depending on the electron beam treatment. Those results provide the electron beam pre-treatment could be applied as an energy efficient and environmentally benign method to increase the dissolution of cellulose with ionic liquids.

FRACTURE TOUGHNESS CHARACTERISTICS IN HIGH ENERGY DENSITY BEAM WELDED JOINT OF HIGH TENSILE STEELS

  • Ro, Chan-Seung;Yamada, Tomoaki;Mochizuki, Masahito;Ishikawa, Nobuyuki;Bang, Han-Sur;Toyoda, Masao
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.583-588
    • /
    • 2002
  • The purpose of the study is to evaluate fracture toughness on the Laser and the electron beam welded joints of high tensile steels (HT500, HT550, HT650) by using 3-point bend CTOD and Charpy impact test. WM (weld metal) CTOD tests have been carried out using two kinds of CTOD specimen, the Laser beam welding (108mm length, and 24mm width, and 12mm thickness) and the electron beam welding (l71mm length, and 38mm width, and 19mm thickness). WM Charpy impact specimen is a standard V-notch type, and the temperature of the experiment is changed from -45 to 20 degree of centigrade. FE-analysis is also performed in order to investigate the effect of stress-strain fields on fracture characteristics. Results of the standard V-notch Charpy test are influenced by strength mis-match effect and the absorbed energy vE depends on crack path, and The transition temperature of Laser beam welded joints is more higher than that of electron beam welded joints. Results of the 3-point bend test give low critical CTOD and the crack path is in the weld metal of al specimens. These results indicate fracture toughness characteristics of the welded joints and transition temperature of HT500 are similar both a Laser beam welded joint and an electron beam welded joint. But the fracture toughness and the transition temperature of the electron beam welded joints of HT550 and HT650 are higher than those o the Laser beam welded joints.

  • PDF

Cellulose-based carbon fibers prepared using electron-beam stabilization

  • Kim, Min Il;Park, Mi-Seon;Lee, Young-Seak
    • Carbon letters
    • /
    • v.18
    • /
    • pp.56-61
    • /
    • 2016
  • Cellulose fibers were stabilized by treatment with an electron-beam (E-beam). The properties of the stabilized fibers were analyzed by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The E-beam-stabilized cellulose fibers were carbonized in N2 gas at 800℃ for 1 h, and their carbonization yields were measured. The structure of the cellulose fibers was determined to have changed to hemicellulose and cross-linked cellulose as a result of the E-beam stabilization. The hemicellulose decreased the initial decomposition temperature, and the cross-linked bonds increased the carbonization yield of the cellulose fibers. Increasing the absorbed E-beam dose to 1500 kGy increased the carbonization yield of the cellulose-based carbon fiber by 27.5% upon exposure compared to untreated cellulose fibers.

New Fabrication Method of the Electron Beam Microcolumn and Its Performance Evaluation (초소형 전자칼럼의 제작 및 특성 연구)

  • Ahn S;Kim D. W;Kim Y. C;Ahn S. J;Kim Y. J;Kim H. S
    • Korean Journal of Materials Research
    • /
    • v.14 no.3
    • /
    • pp.186-190
    • /
    • 2004
  • An electron beam microcolumn composed of an electron emitter, micro lenses, scan deflector, and focus lenses have been fabricated and tested in the STEM mode. In this paper, we report a technique of precisely aligning the electron lenses by the laser diffraction patterns instead of the conventional alignment method based on aligner and STM. STEM images of a standard Cu-grid were observed using a fabricated microcolumn under both the retarding and accelerating modes.

A Study on Electron Beam Dosimetry for Chest Wall Irradiation (흉곽(胸廓)의 전자선(電子線) 조사시(照射時) 선량분포(線量分布)에 관(關)한 연구(硏究))

  • Kang, Wee Saing;Koh, Kyoung Hwan;Ha, Sung Whan;Park, Charn Il
    • Radiation Oncology Journal
    • /
    • v.1 no.1
    • /
    • pp.41-45
    • /
    • 1983
  • To obtain 7 MeV electron beam which is suitable for treatment of the chest wall after radical of modified radical mastectomy, the authors reduced the energy of electron beam by means by Lucite plate inserted in the beam. To determine the proper thickness of the Lucite plate necessary to reduce the energy of 9 MeV electron beam to 6 MeV, dosimetry was made by using a parallel plate ionization chamber in polystyrene phantom. Separation between two adjacent fields, 7 MeV for chest wall and 12 MeV for internal mammary region, was studied by means of film dosimetry in both polytyrene phantom and Humanoid phantom. The results were as follows. 1. The average energy of 9 MeV electron beam transmitted through the Lucite plate was reduced. Reduction was proportional to the thickness of the Lucite plate in the rate of 1.7 MeV/cm. 2. The proper thickness of the Lucite plate necessary to obtain 6 MeV electron beam from 9 MeV was 1.2 cm. 3. 7 MeV electron beam, 80% dose at 2cm depth, is adequate for treatment of the chest wall. 4. Proper separation between two adjacent electron fields, 7 MeV and 12 MeV, was 5mm on both flat surface and sloping surface to produce uniform dose distribution.

  • PDF

Effect of Different Conveyer Speed of Electron Beam Irradiation on the Oxidative and Microbiological Stability of Ground Pork during Refrigeration (Conveyer 이동 속도를 달리한 전자선 조사가 돈육의 냉장 중 산화와 미생물적 안정성에 미치는 영향)

  • Whang, Key
    • Food Science of Animal Resources
    • /
    • v.23 no.1
    • /
    • pp.50-55
    • /
    • 2003
  • Fresh ground pork was irradiated with the electron beam(3.0 and 5.0 kGy) using 2 different conveyer speeds (10 and 20 ㎐), respectively, in order to determine the effect of conveyer speeds on the development of lipid oxidation and microbial stability. During refrigerated storage, the development of lipid oxidation decreased significantly (p<0.05) with the increase in the electron beam conveyer speed from 10 to 20 ㎐. The ground pork with electron beam inhibited the growth of total aerobic bacteria and mesophiles. The inhibitory effect increased when the electron beam dose increased from 0 to 5.0 kGy. The finding that higher speed(20 ㎐) of electron beam had some antioxidative effect is very promising, however, other means to control the lipid oxidation must also be employed to fully utilize the sterilization effect of electron beam in ground pork.

Effects of Electron Beam Irradiation on Pathogen Inactivation, Quality, and Functional Properties of Shell Egg during Ambient Storage

  • Kim, Hyun-Joo;Yun, Hye-Jeong;Jung, Samooel;Jung, Yeon-Kuk;Kim, Kee-Hyuk;Lee, Ju-Woon;Jo, Cheor-Un
    • Food Science of Animal Resources
    • /
    • v.30 no.4
    • /
    • pp.603-608
    • /
    • 2010
  • This study investigated the effects of electron beam irradiation on pathogens, quality, and functional properties of shell eggs during storage. A 1st grade 1-d-old egg was subjected to electron beam irradiation at 0, 1, 2, and 3 kGy, after which the number of total aerobic bacteria, reduction of inoculated Escherichia coli and Salmonella Typhimurium, egg quality, and functional properties were measured. Electron beam irradiation at 2 kGy reduced the number of E. coli and S. Typhimurium cells to a level below the detection limit (<$10^2$ CFU/g) after 7 and 14 d of storage. Egg freshness as measured by albumen height and the number of Haugh units was significantly reduced by 1-kGy irradiation. The viscosity of irradiated egg white was also significantly decreased by increased irradiation, whereas its foaming ability was increased. Electron beam irradiation also increased lipid oxidation in egg yolks. These results suggest that electron beam irradiation reduces the freshness of shell eggs while increasing the oxidation of egg yolk and improving important functional properties such as foaming capacity. Electron beam irradiation can also be applied to the egg breaking process since the irradiation reduces the viscosity of egg white, which can allow egg whites and yolks to be separated with greater efficiency.

The Simulation on Dose Distributions of the 6 MeV Electron Beam in Water Phantom (6 MeV 전자선의 물팬텀 속의 선량분포에 관한 모의계산)

  • Lee, Jeong-Ok;Jeong, Dong-Hyeok;Moon, Sun-Rock
    • Journal of radiological science and technology
    • /
    • v.23 no.2
    • /
    • pp.75-79
    • /
    • 2000
  • This study was performed for the clinical applications applying the Monte Carlo methods. In this study we calculated the absorbed dose distributions for the 6 MeV electron beam in water phantom and compared the results with measured values. The energy data of electron beam used in Monte Carlo calculation is the energy distribution for 6 MeV electron beam which is assumed as a Gaussian form. We calculated percent depth doses and beam profiles for three field sizes of $10{\times}10,\;15{\times}15$, and $20{\times}20\;cm^2$ in water phantom using Monte Carlo methods and measured those data using a semiconductor detector and other devices. We found that the calculated percent depth doses and beam profiles agree with the measured values approximately. However, the calculated beam profiles at the edge of the fields were estimated to be lower than the measured values. The reason for that result is that we did not consider the angular distributions of the electrons in phantom surface and contamination of X-rays in our calculations. In conclusion, in order to apply the Monte Carlo methods to the clinical calculations we are to study the source models for electron beam of the linear accelerator beforehand.

  • PDF

Analysis of Dose Distribution According to the Initial Electron Beam of the Linear Accelerator: A Monte Carlo Study

  • Park, Hyojun;Choi, Hyun Joon;Kim, Jung-In;Min, Chul Hee
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.1
    • /
    • pp.10-19
    • /
    • 2018
  • Background: Monte Carlo (MC) simulation is the most accurate for calculating radiation dose distribution and determining patient dose. In MC simulations of the therapeutic accelerator, the characteristics of the initial electron must be precisely determined in order to achieve accurate simulations. However, It has been computation-, labor-, and time-intensive to predict the beam characteristics through predominantly empirical approach. The aim of this study was to analyze the relationships between electron beam parameters and dose distribution, with the goal of simplifying the MC commissioning process. Materials and Methods: The Varian Clinac 2300 IX machine was modeled with the Geant4 MC-toolkit. The percent depth dose (PDD) and lateral beam profiles were assessed according to initial electron beam parameters of mean energy, radial intensity distribution, and energy distribution. Results and Discussion: The PDD values increased on average by 4.36% when the mean energy increased from 5.6 MeV to 6.4 MeV. The PDD was also increased by 2.77% when the energy spread increased from 0 MeV to 1.019 MeV. In the lateral dose profile, increasing the beam radial width from 0 mm to 4 mm at the full width at half maximum resulted in a dose decrease of 8.42% on the average. The profile also decreased by 4.81% when the mean energy was increased from 5.6 MeV to 6.4 MeV. Of all tested parameters, electron mean energy had the greatest influence on dose distribution. The PDD and profile were calculated using parameters optimized and compared with the golden beam data. The maximum dose difference was assessed as less than 2%. Conclusion: The relationship between the initial electron and treatment beam quality investigated in this study can be used in Monte Carlo commissioning of medical linear accelerator model.