• Title/Summary/Keyword: Electron transfer model

Search Result 67, Processing Time 0.027 seconds

Analysis of Textbooks of Chemistry I, II and Survey of Chemistry Education Major Pre-service Teachers' Perception Related to the Electron Transfer Model (전자 이동 모델에 대한 화학 I, 화학 II 교과서 분석 및 화학 교육 전공 예비교사들의 이그노런스 인식 조사)

  • Ryu, Eun-Ju;Jeon, Eun-Sun;Paik, Seoung-Hey
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.5
    • /
    • pp.358-369
    • /
    • 2021
  • In this study, the contents of the electron transfer model presented in the 4 chemistry I and the 4 chemistry II textbooks of 2009 revised curriculum and 9 chemistry I textbooks and 6 chemistry II textbooks of 2015 revised curriculum were analyzed in the viewpoint of model's Ignorance. In addition, 3 questions were developed to find out whether 24 pre-service teachers were perceived of the Ignorance of the electron transfer model. As a result, Most textbooks explain the redox reaction of covalent bond substances, which is an inconsistent context of the electron transfer model, with mixing oxidation number change and electron transfer or with electron transfer. In addition, the change to the development and use of the model emphasized in the 2015 revised curriculum was not clearly revealed in the curriculum comparison. Most pre-service teachers incompletely perceived or did not perceive Ignorance of the electron transfer model. Only 1 pre-service teacher perceived Ignorance of the model. In conclusion, the textbook description needs to be improved so that Ignorance of the model is revealed when the textbook describes the inconsistent situation of the electron transfer model. And through the education for pre-service teachers, it is necessary to provide an opportunity for pre-service teachers to perceive Ignorance of the electron transfer model.

STUDY OF CONTACT ION PAIR DYNAMICS IN VIEW OF THE MOLECULAR SHAPES

  • Han, Chul-Hee
    • Journal of Photoscience
    • /
    • v.3 no.3
    • /
    • pp.147-151
    • /
    • 1996
  • Dynamics of contact ion-pair between 1, 2, 4, 5-tetracyanobenzene anion and cation of biphenyl derivatives was investigated on the picosecond time scale. Solvent effect on the electron transfer was observed and electron transfer rates were examined using Marcus equation which contains distance dependence of the electron transfer rate in the frequency factor, along with the consideration of molecular shape. From the discussion based on disk model for molecular shape, contribution of interring torsional motion of biphenyl to the inner-sphere reorganization energy is strongly suggested, which leads to the physical explanation for the observed solvent effect on the rate of electron transfer.

  • PDF

Elucidation of photo-induced electron transfer in a loop-forming peptide: Dye-Ala-Gly-Gln-Tyr

  • Lee, Hwiin;Kim, Jeongyun;Kwon, Yong-Uk;Lee, Minyung
    • Rapid Communication in Photoscience
    • /
    • v.4 no.3
    • /
    • pp.59-62
    • /
    • 2015
  • We investigated photo-induced electron transfer (PET) in a dye-labeled peptide, fluorophore-Ala-Gly-Gln-Tyr, employing time-resolved fluorescence. As an effort to develop new functional dyes, we studied an acriflavine derivative for the electron-acceptor in the excited state from tyrosine, an electrondonor in the ground-state. The pH dependence of the fluorescence lifetime of the model peptide indicates that electron transfer between the excited dye and tyrosine occurs when the tyrosine is deprotonated. The proton-coupled electron transfer appears to be sequential rather than concerted. We also report direct time measurements on the end-to-end loop formation processes of the peptide in water.

Analysis of Intramolecular Electron Transfer in A Mixed-Valence Cu(Ⅰ)-Cu(Ⅱ) Complex Using the PKS Model

  • So Hyunsoo
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.385-388
    • /
    • 1992
  • The transition probabilities for the thermal intramolecular electron transfer and the optical intervalence transfer band for a symmetric mixed-valence Cu(I)-Cu(II) compound were used to extract the PKS parameters $\varepsilon$ = -1.15, ${\lambda}$ = 2.839, and ${\nu}g$- = 923 $cm^{-1}$. These parameters determine the potential energy surfaces and vibronic energy levels. Three pairs of vibrational levels are below the top of the energy barrier in the lower potential surface. The contribution of each vibrational state to the intramolecular electron transfer was calculated. It is shown that the three pairs of vibrational states below the top of the barrier are responsible for most of the electron transfer at 261-306 K. So the intramolecular electron transfer in this system is a tunneling process. The transition probability exhibits the usual high-temperature Arrhenius behavior, but at lower temperature falls off to a temperature-independent value as tunneling from the lowest levels becomes the limiting process.

Femtosecond Photoelectron Imaging of N2 at 410 nm

  • Guo, Wei;Wei, Shanshan;Lu, Xingqiang;Wang, Li
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3693-3696
    • /
    • 2010
  • We experimentally measure the kinetic energy and angular distributions of photoelectrons of $N_2$ as a function of 410 nm femtosecond laser intensity by using velocity map imaging technique. The strong-field multiphoton ionization of molecules shares many of the characteristics with those of atoms. Electron kinetic energies are nearly independent of laser intensities. The independence suggests that the electron peaks in the photoelectron spectrum actually result from a two-step process, indicative of the occurrence of real population in the intermediate states. The relative amplitudes of electron peaks indicate that in the two-step process, nonresonant population transfer dominates for low intensities, while resonant population transfer dominates for higher intensities.

Cytochrome c Peroxidase: A Model Heme Protein

  • Erman, James E.;Vitello, Lidia B.
    • BMB Reports
    • /
    • v.31 no.4
    • /
    • pp.307-327
    • /
    • 1998
  • Cytochrome c peroxidase (CcP) is a yeast mitochondrial enzyme which catalyzes the reduction of hydrogen peroxide to water using two equivalents of ferrocytochrome c. The CcP/cytochrome c system has many features which make it a very useful model for detailed investigation of heme protein structure/function relationships including activation of hydrogen peroxide, protein-protein interactions, and long-range electron transfer. Both CcP and cytochrome c are single heme, single subunit proteins of modest size. High-resolution crystallographic structures of both proteins, of one-to-one complexes of the two proteins, and a number of active-site mutants are available. Site-directed mutagenesis studies indicate that the distal histidine in CcP is primarily responsible for rapid utilization of hydrogen peroxide implying significantly different properties of the distal histidine in the peroxidases compared to the globins. CcP and cytochrome c bind to form a dynamic one-to-one complex. The binding is largely electrostatic in nature with a small, unfavorable enthalpy of binding and a large positive entropy change upon complex formation. The cytochrome c-binding site on CcP has been mapped in solution by measuring the binding affinities between cytochrome c and a number of CcP surface mutations. The binding site for cytochrome c in solution is consistent with the crystallographic structure of the one-to-one complex. Evidence for the involvement of a second, low-affinity cytochrome c-binding site on CcP in long-range electron transfer between the two proteins is reviewed.

  • PDF

Effects of transient thermo reflectance on the thermal responses of metal thin film exposed to ultrashort laser heating (극초단 펄스레이저 광이 입사된 금속박막의 열적반응 중 비정상반사율의 영향)

  • 박승호;국정진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.528-536
    • /
    • 1999
  • This work studies the effects of transient reflectance on the thermal responses of a metal(gold) thin-film during ultrashort laser heating. The heating process is calculated using the conventional conduction model (parabolic one-step: POS), parabolic two-step model (PTS) with and without variable properties, hyperbolic two-step model (HTS). Results from the HTS model are very similar to those from the PTS model, since the laser heating time in this study is greater than the electron relaxation time. PTS model with variable properties, however, results in totally different temperature profiles compared to those from POS models or calculation with constant properties. Transient reflectances are estimated from electron temperature distributions and based on the linear relationship between the electron temperature and complex dielectric constants. Reflectance of the front surface can be changed with respect to dielectric constants, while those of the rear surface remain unchanged.

  • PDF

Effects of Temperature Coefficients for Dielectric Constants on Thermoreflectances and Thermal Responses of Metal Thin Films Exposed to Ultrashort Pulse Laser Beams

  • Seungho Park
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • Effects of temperature coefficients fur dielectric constants on transient reflectances and thermal responses have been investigated for a metal(gold) thin-film during ultrashort pulse laser heating. Heating processes are simulated using the conventional conduction model(parabolic one-step, POS), the parabolic tow-step model(PTS), the hyperbolic two-step model(HTS). Results fro the HTS model are very similar to those from the PTS model, since the laser heating time in this study is considerably greater than the electron relaxation time. PTS and HTS models, however, result in completely different temperature profiles from those obtained by the POS model due to slow electron-lattice interactions compared to laser pulse duration. Transient reflectances are directly estimated from the linear relationship between electron temperature and complex dielectric constants, while conventional approaches assume that the change in reflectances is proportional to that in temperatuer. Reflectances at the front surface vary considerably for various dielectric constants, while those at the rear surface remain unchanged relatively.

Computational Modeling of Cyclic Voltammetry on Multi-electron Electrode Reaction using Diffusion Model (확산모델을 이용한 다중전자 전극반응에 대한 순환전위법의 전산모델링)

  • Cho, Ha-Na;Yoon, Do-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.3
    • /
    • pp.165-171
    • /
    • 2012
  • Here is implemented MATLAB program to analyze the characteristic curves of cyclic voltammetry which involves the multi-electron electrode reaction considered as key processes in electrochemical systems. For the electrochemical mass-transfer system, Fick's concentration equation subject to semi-infinite diffusion model for the boundary condition was discretized and solved by the explicit finite difference method. The resulting concentration values were converted into currents at each node by using Butler-Volmer equation. Based on the good agreement between the present numerical solution and the existing experimental results, effects of kinetic constants and CV scan rates on the reaction mechanism in multi-electron transfer processes were investigated effectively.

Determination of Reorganization Energy from the Temperature Dependence of Electron Transfer Rate Constant for Hydroquinone-tethered Self-assembled Monolayers (SAMs)

  • Park, Won-choul;Hong, Hun-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.3
    • /
    • pp.381-385
    • /
    • 2006
  • The temperature dependence on the electron transfer rate constant $(k_{app})$ for hydroquinone redox center in $H_2Q(CH_2)_n$SH-SAMs (n = 1, 4, 6, 8, 10, and 12) on gold electrode was investigated to obtain reorganization energy $(\lambda)$ using Laviron’s formalism and Arrhenius plot of ln $[k_{app}/T^{1/2}]$ vs. T^{-1} based on the Marcus densityof-states model. All the symmetry factors measured for the SAMs were relatively close to unity and rarely varied to temperature change as expected. The electron tunneling constant $(\beta)$ determined from the dependence of the $k_{app}$ on the distance between the redox center and the electrode surface gives almost the same $\beta$ values which are quite insensitive to temperature change. Good linear relationship of Arrhenius plot for all $H_2Q(CH_2)_n$SH-SAMs on gold electrode was obtained in the temperature range from 273 to 328 K. The slopes n Arrhenius plot deduced that $\lambda$ of hydroquinone moiety is ca. 1.3-1.4 eV irrespectively of alkyl chain length of the electroactive SAM.