• Title/Summary/Keyword: Electron paramagnetic resonance(EPR)

Search Result 62, Processing Time 0.019 seconds

Electron Paramagnetic Resonance of the I2-Doped PBMPV Conducting Polymers

  • Lee, C. H.;Lee, Cheol-Eui;J.-I. Jin;S.-J. Chung
    • Journal of Magnetics
    • /
    • v.2 no.4
    • /
    • pp.123-125
    • /
    • 1997
  • We have studied a series of I2-doped poly [2-buthoxy-5-methoxy-1, 4-phenylenevinylene] (PBMPV) conducting polymers by means of electron paramagnetic resonance (EPR) measurements. In this work, the EPR linewidth and spin density were obtained from the EPR intensity and studied as a function of the degree of doping.

  • PDF

Dosimetry Application of Irradiated D-fructose using the Electron Paramagnetic Resonance

  • Son, Phil Kook;Choi, Suk-Won;Kim, Sung Soo;Gwag, Jin Seog
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.271-274
    • /
    • 2012
  • We examine dosimetry application of irradiated D-fructose materials using electron paramagnetic resonance (EPR). Consequently, we consider that fructose is one of best dosimetry materials. We found that fructose is one of best candidates for dosimetry due to high linearity tilt of EPR signal intensity as a function of dose, irrelevant to photon energy, constant fading value. Also, our results show that fructose materials can be applied as a radiation detector to very weak radiation doses of 0.001 Gray by using EPR at a low temperature (T = 220 K).

The Low-Radiation Dosimetry Application of "tris" Lyoluminescence using Electron Paramagnetic Resonance at Low Temperature

  • Son, Phil-Kook;Choi, Suk-Won;Kim, Sung-Soo;Gwag, Jin-Seog
    • Journal of Magnetics
    • /
    • v.17 no.3
    • /
    • pp.172-175
    • /
    • 2012
  • We present a method for detecting very weak radiation by analyzing the inner structure of irradiated tris (lyoluminescence) materials using electron paramagnetic resonance (EPR) at low temperature. Organic materials have been looked into for use in emergency dosimetry of inhabitants around radiation accidents. However, this technology has never been applied to imperceptible radiation doses (< 0.5 Gy) because there is no proper method for detecting the change of inner structure of the subject bombed by very weak radiation at room temperature. Our results show that tris materials can be applied as a radiation detectors of very small radiation doses below 0.05 Gray, if EPR is used at low temperature (130 K ${\leq}$ T ${\leq}$ 270 K). The EPR signal intensity from the irradiated-tris sample had barely faded at all after 1 year.

A Study of Electron Paramagnetic Resonance of Sugar Irradiated X-ray (X-선에 조사된 설탕의 전자 상자성 공명 연구)

  • Ok, Chi-Il;Son, Phil-Kook;Heo, Kyoung-Chan;Shon, Jong-Gi;Lee, In;Kim, Jang-Whan
    • Journal of radiological science and technology
    • /
    • v.23 no.2
    • /
    • pp.39-42
    • /
    • 2000
  • When ordinary sugar is exposed to ionizing radiation, a number of free radical are created in sugar, and Electron Paramagnetic Resonance (EPR) signal appears from the sugar because of the paramagnetic property of free radical. In this paper, EPR signal intensity has been measured in x-ray irradiated sugar for various absorbed doses, irradiated dose up to 50 Gy. The EPR intensity signals are increased as the x-ray irradiation increases. Also, the fading value decreased to about 3% in 30day after the irradiation. Therefore, the sugar is a useful material for emergency dosimeter as the free radical dosimetry with the EPR equipment.

  • PDF

Electron Paramagnetic Resonance Study of Bis(N-methyl-2-amino-1-cyclopentenedithiocarboxylato)Copper (II)

  • Woo-Seong Kim;Young-Inn Kim;Sung-Nak Choi
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.2
    • /
    • pp.85-88
    • /
    • 1990
  • The electron paramagnetic resonance (EPR) spectrum of the copper (II) complex with the 2-methylamino-1-cyclo-pentene-1-dithiocarboxylate (acdc) anion, $Cu(N-CH_3acdc)_2$ has been studied in the diamagnetic host lattices afforded by the corresponding divalent nickel, zinc, cadmium and mercury complexes. EPR parameters of the complex support the exclusive use of sulfur atoms by the ligand in metal binding. A combination of host lattice structure and covalency effects can be account for the observed spin-Hamiltonian parameters.

Fingernail electron paramagnetic resonance dosimetry protocol for localized hand exposure accident

  • Jae Seok Kim;Byeong Ryong Park;Minsu Cho;Won Il Jang;Yong Kyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.270-277
    • /
    • 2023
  • Exposure to ionizing radiation induces free radicals in human nails. These free radicals generate a radiation-induced signal (RIS) in electron paramagnetic resonance (EPR) spectroscopy. Compared with the RIS of tooth enamel samples, that in human nails is more affected by moisture and heat, but has the advantages of being sensitive to radiation and easy to collect. The fingernail as a biological sample is applicable in retrospective dosimetry in cases of localized hand exposure accidents. In this study, the dosimetric characteristics of fingernails were analyzed in fingernail clippings collected from Korean donors. The dose response, fading of radiation-induced and mechanically induced signals, treatment method for evaluation of background signal, minimum detectable dose, and minimum detectable mass were investigated to propose a fingernail-EPR dosimetry protocol. In addition, to validate the practicality of the protocol, blind and field experiments were performed in the laboratory and a non-destructive testing facility. The relative biases in the dose assessment result of the blind and field experiments were 8.43% and 21.68% on average between the reference and reconstructed doses. The results of this study suggest that fingernail-EPR dosimetry can be a useful method for the application of retrospective dosimetry in cases of radiological accidents.

Development of a Wideband EPR Spectrometer with Microstrip and Loop Antennas

  • Ponomaryov, A.N.;Choi, K.Y.;Suh, B.J.;Jang, Z.H.
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.178-182
    • /
    • 2013
  • We have developed a new non-conventional electron paramagnetic resonance (EPR) spectrometer, in which no resonant cavity was used. We previously demonstrated a wide frequency range operation of an EPR spectrometer using two loop antennas, one for a microwave transmission and the other for signal detection [1]. In contrast to Ref. [1], the utilization of a microstrip antenna as a transmitter enhanced a capability of wide-band operation. The replacement of conventional capacitors with varactor diodes makes resonance condition easily reproducible without any mechanical action during tuning and matching procedure since the capacitance of the diodes is controlled electronically. The operation of the new EPR spectrometer was tested by measuring a signal of 1,1-diphenil-2-picrylhydrazyl (DPPH) sample in the frequency range of 0.8-2.5 GHz.

Temperature Dependence of Mn2+ Paramagnetic Ion in a Stoichiometric LiNbO3 Single Crystal

  • Yeom, Tae Ho;Lee, Soo Hyung
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.221-224
    • /
    • 2013
  • Electron paramagnetic resonance (EPR) spectra of $Mn^{2+}$ impurity ion in Stoichiometric $LiNbO_3$ single crystal (SLN) was investigated with an X-band EPR spectrometer in the temperature range of 3 K~296 K. The intensity of EPR spectrum of $Mn^{2+}$ ion was increased to 20 K and decreased again below 20 K as the temperature decreases. The zero-field splitting parameter D decreased as the temperature increases. It was suggested that $Mn^{2+}$ ion substitute for $Nb^{5+}$ ion instead of $Li^+$ ion. No changes for hyperfine interaction of $Mn^{2+}$ ion was obtained in the temperature range of 3 K~296 K.

Second intercomparison on electron paramagnetic resonance (EPR) retrospective dosimetry in Korea using hydroxyapatite

  • HyoJin Kim;Jae Seok Kim;Byeong Ryong Park;Seongjae Jang;Han-Ki Jang;Ki-Taek Han;Hoon Choi;Jeongin Kim;In Jung Kim;Yunho Kim;Wi-Ho Ha;Jungil Lee;Yeong-Rok Kang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4576-4582
    • /
    • 2023
  • The Korea retrospective dosimetry (KREDOS)-electron paramagnetic resonance (EPR) group undertook an intercomparison investigation utilizing hydroxyapatite. This analysis involved four institutions: the Korea Institute of Radiological and Medical Sciences, Dongnam Institute of Radiological and Medical Sciences, Korean Association for Radiation Application, and Radiation Health Institute of Korea Hydro & Nuclear Power. Following the irradiation of the hydroxyapatite sample, the recorded build-up was analyzed. To validate the reliability of the EPR dosimetry findings and enhance its operational performance, a hydroxyapatite dose-response curve was plotted and dosimetry was performed for a blind sample. The proficiency of each laboratory was assessed by employing an interlaboratory comparison methodology. This involved a comparative analysis of the measurement results by calculating the relative bias, z-score, and En value. The results submitted by the participating laboratories demonstrated satisfactory ratings for doses of 1.006, 3.999, and 6.993 Gy. Following the second intercomparison, efforts to optimize their hydroxyapatite-EPR dosimetry systems are underway in the participating laboratories. The current assessment of hydroxyapatite dose yielded the foundational data required to establish the parameters of dental dosimetry. In future, the third intercomparison experiment will be conducted for exploring other materials.

Thermal Effects on Stoichiometric LiTaO3 Single Crystal (정비조성 LiTaO3 단결정에 대한 열처리 효과)

  • Yeom, T.H.;Lee, S.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.3
    • /
    • pp.177-180
    • /
    • 2005
  • Ferroelectric $LiTaO_3$ single crystals, grown by the Czochralski method, were thermally treated at temperature $1000^{\circ}C\;and\;1100^{\circ}C$. Electron paramagnetic resonance (EPR) study of stoichiometric $LiTaO_3$ and thermally treated $LiTaO_3$ crystals has been investigated by employing an X-band spectrometer. From the $Fe^{3+}$ EPR spectra, it turned out that there is no change of site location and local site symmetry around $Fe^{3+}$ impurity ion between stoichiometric and thermally treated $LiTaO_3$ single crystals. We confirmed that the ionic state of $Fe^{3+}$ ion changed after thermal treatment. The EPR parameters of $Fe^{3+}$ ion in $LiTaO_3$ single crystals are determined with effective spin Hamiltonian.