• Title/Summary/Keyword: Electron irradiation

Search Result 1,018, Processing Time 0.03 seconds

Preparation and photocatalytic activity of ACF/$TiO_2$ composites by using titanium n-butoxide and acid modified activated carbon fiber

  • Oh, Won-Chun;Kwon, Ho-Joug;Chen, Ming-Liang;Zhang, Feng-Jun;Ko, Weon-Bae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.3
    • /
    • pp.144-151
    • /
    • 2009
  • Photocatalytic degradation of methylene blue (MB) in aqueous solution was investigated using $TiO_2$ coated on various acid modified activated carbon fiber (ACF). The ACFs/$TiO_2$ composites were prepared from titanium n-butoxide (TNB) as titanium precursor and various acid modified ACFs. The prepared samples are heat treated at 973 K. Then the ACF/$TiO_2$ composites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX). Moreover, photocatalytic degradation of MB by the ACF/$TiO_2$ composites was determined under UV irradiation. The results shows that the photocatalytic activity of ACF/$TiO_2$ composites ($AT1{\sim}AT4$) prepared with TNB and various acid modified ACF was much better than that of ACF/$TiO_2$ composite (AT) prepared with TNB and non-acid modified ACF, and the effects improved with order of sample AT3 > AT4 > AT1 > AT2.

Monosaccharides from industrial hemp (Cannabis sativa L.) woody core pretreatment with ammonium hydroxide soaking treatment followed by enzymatic saccharification

  • Shin, Soo-Jeong;Han, Sim-Hee;Park, Jong-Moon;Cho, Nam-Seok
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.5
    • /
    • pp.15-19
    • /
    • 2009
  • Ammonia soaking treatment was introduced for hemp woody core pretreatment to increase enzymatic saccharification of polysaccharides. Portions of the xylan, cellulose, and lignin were removed by aqueous ammonia soaking, which improved the enzymatic saccharification of cellulose and xylan. Following ammonia soaking, 37% ($50^{\circ}C$-6 day treatment) to 61% ($90^{\circ}C$-16 h treatment) of the cellulose was converted to glucose and 33% ($50^{\circ}C$-6 day treatment) to 48% ($90^{\circ}C$-16 h treatment) of the xylan to xylose. Cellulose responded better to enzymatic saccharification than did xylan after the ammonia soaking treatment. Aqueous ammonia soaking pretreatment was more effective than electron beam irradiation for increasing enzymatic saccharification of xylan and cellulose in hemp woody core.

Detection of Irradiated Potato and Garlic by Thermoluminescence Measurement (Thermoluminescence 측정에 의한 감자와 마늘의 방사선 조사유무 확인)

  • Chung, Hyung-Wook;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.283-287
    • /
    • 1998
  • Potato and garlic irradiated with gamma ray and electron beam at sprout-inhibition doses, 0.15 and 0.30 kGy were subjected to the detection whether they are irradiated or not by measuring thermoluminescence(TL) for the minerals adhering to the samples. Minerals extracted from the samples showed a high correlation coefficients between absorbed doses and corresponding TL responses. Nonirradiated samples, however, did not exhibit characteristic TL glowcurves. Major glowcurve peaks were observed at 200 to $260^{\circ}C$ in all irradiated samples. TL intensity was proportional to irradiated doses, but it varied with the samples tested even at the same dose. It can be concluded from the results that detection of irradiated potato and garlic is possible by measuring TL for extracted minerals from the unknown samples.

  • PDF

Effect of ACF and WO3 from ACF/WO3/TiO2 Composite Catalysts on the Photocatalytic Degradation of MO Under Visible Light

  • Meng, Ze-Da;Song, Da-Ye;Zhu, Lei;Park, Chong-Yeon;Choi, Jong-Geun;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.4
    • /
    • pp.282-287
    • /
    • 2011
  • ACF and $WO_3$ modified $TiO_2$ composites (ACF/$WO_3$/$TiO_2$) were prepared using a sol-gel method. The composites were characterized by Brunauer.Emmett.Teller (BET) surface area measurements, X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis and scanning electron microscope (SEM) analysis. A methyl orange (MO) solution under visible light irradiation was used to determine the photocatalytic activity. The degradation of the MO was determined using UV/Vis spectrophotometry. An increase in photocatalytic activity was observed and attributed to an increase of the photo-absorption effect by the $WO_3$ and the cooperative effect of the ACF.

Photo-grafting Dyeing of Wool Fabrics with ${\alpha}$-bromoacrylamide reactive dye (반응성 염료를 이용한 양모직물의 광그라프트 염색)

  • Dong, Yuanyuan;Jang, Jin-Ho
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.31-31
    • /
    • 2011
  • Lanasol dyes containing ${\alpha}$-bromoacrylamide or ${\alpha},{\beta}$-dibromopropionylamide group are used for wool dyeing. They are normally applied to wool under pH 4.5 to 6.5 at $100^{\circ}C$. Although wool fabric can be dyed to obtain deep colour, high light and wet fastness, the dyeing processes need long dyeing time at high temperature, with salt addition, which inevitably causes environmental problems. Grafting is a modification method for textile where monomers are covalently bonded onto the polymer chain. It can be initiated by ozone, ${\gamma}$ rays, electron beams, plasma, corona discharge and UV irradiation. Coloration by UV-induced photografting exhibits several advantages such as fast reaction rate, energy saving, simple equipment, easy exploitation and environmentally friendliness. Also it requires much lower energy compared to the conventional dyeing and less damage to the substrate. In this study, a direct sequential UV-induced photografting onto wool fabrics was discussed. To understand the graft polymerization mechanism further, several characterization methods were used. Moreover, the effects of several principal factors on the graft photopolymerization were investigated. Furthermore, the colorfastness results were compared with conventional dyeing methods.

  • PDF

Implementation of the Radiation Protection Module for Electronic Equipment from Pulsed Radiation and Its Function Tests (펄스방사선에 대한 전자장비 방호용 모듈구현 및 기능시험)

  • Lee, Nam-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1421-1424
    • /
    • 2013
  • The electronic equipment which is exposed to high level pulsed radiation is damaged by Upset, Latchup, and Burnout. Those damages come from the instantaneous photocurrent from electron-hole pairs generated in itself. Such damages appear as losses of a power in military weapon system or as a blackout in aerospace equipment and eventually caused in gross loss of national power. In this paper, we have implemented a RDC(Radiation detection and control module) as a part of the radiation protection technology of the electronic equipment or devices from the pulsed gamma radiation. The RDC, which is composed of pulsed gamma-ray detection sensor, signal processors, and pulse generator, is designed to protect the an important electronic circuits from the a pulse radiation. To verify the functionality of the RDC, LM118s, which had damaged by the pulse radiation, were tested. The test results showed that the test sample applied with the RDC was worked well in spite of the irradiation of a pulse radiation. Through the experiments we could confirm that the radiation protection technology implemented with the RDC had the functionality of radiation protection for the electronic devices.

A study of DSC using Ultrasonic and Thermal treatment on nano-crystalline $TiO_{2}$ surface (염료감응형 태양전지 $TiO_{2}$ 광전극 표면의 초음파 열처리에 관한 연구)

  • Hong, Ji-Tae;Choi, Jin-Young;Seo, Hyun-Woong;Kim, Jong-Lak;Kim, Hee-Je
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.317-319
    • /
    • 2007
  • Recently, there were many researches for efficiency improvement of DSC. Among of these works, research of surface treatment is still a prerequisite for electron diffusion, light-harvesting and surface state of $DSC^{4)}$. Using of the surface treatment, it can be raise up porosity of $TiO_{2}$ nano-crystalline structure on $photo-electrode^{5)}$. There are chemical, physical, electrical and optical methods which raise up its porosity. In this paper, we have designed and manufactured MOPA-type ultrasonic circuit (100W, frequency and duty variable). Manufactured ultrasonic circuit to use to force cavity density and power into $TiO_{2}$ paste. Then, we have optimized forcing time, frequency and duty of ultrasonic irradiation for surface treatment of photo-electrode of DSC. In I-V characteristic test of DSC, ultrasonic and thermal treated DSC shows 19% improved its efficiency against established DSC.

  • PDF

Studies on the Phage of Vibrio parahaemolyticus (Vibrio parahaemolyticus의 Phage에 관한 연구)

  • Ju, Jin-Woo;Lee, Ghee-Hee;Kim, Il
    • The Journal of the Korean Society for Microbiology
    • /
    • v.22 no.1
    • /
    • pp.61-70
    • /
    • 1987
  • Authors have isolated phages of V. parahaemolyticus from shellfish and investigated some of their characteristics. The results obtained were as follows: Twenty-three phage strains(9.2%) out of 250 specimens were isolated. Plaques of phages were small, clear or turbid and $0.5{\sim}1.5mm$ in diameter. The electron micrographs of K3 phages showed two morphology; one was a hexagonal head about 105nm with a tail about 12nm, the other was a hexagonnal head about 60nm with a tail about 25nm. The host ranges of pahges were limited to V. parahaemolyticus strains and there appeared to be no relationship between the K serotypes of V. parahaemolyticus strains and the host ranges of the phage isolates. The adsorption rate of phages were more than 80% for $10{\sim}15$ minutes, the inactivation rate at $60^{\circ}C$ was more than 99% for $40{\sim}45$ minutes. The pH stability range was between 6.0 and 8.0. The inactivation rate of phages by UV irradiation was more than 99% for $45{\sim}75$ seconds.

  • PDF

Laser Copper Patterning by wettability improvement of Silicon (레이저에 의한 실리콘 표면의 습윤성 향상과 구리 패터닝)

  • Kim, Dong-Yung;Lee, Kyoung-Cheol;Lee, Cheon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1080-1083
    • /
    • 2002
  • In this paper, we have studied with regard to the use of lasers for modifying the surface properties of silicon in order to improve it's wettability and adhesion characteristics. Using an Nd:YAG pulse laser, the wettability and adhesion characteristics of silicon surface have been developed by an Nd:YAG pulse laser. It was found that the laser treatment of silicon surfaces modified the surface energy. In the result of wetting experiments, by the sessile drop technique using the distilled water, wetting characteristic of silicon after the laser irradiation shows a decreased value of the contact angle. In case of the laser treated silicon surface, laser direct writing of copper lines has been achieved by pyrolytic decomposition of copper formate films$(Cu(HCOO)_2{\cdot}4H_2Q)$, using a focused $Ar^+$ laser beam$(\lambda=514.5nm)$ on the silicon substrates. The deposited patterns were measured by energy dispersive X-ray(EDX), Scanning Electron Microscopy(SEM) and surface profiler($\alpha$-step) to examine the cross section of deposited copper lines and linewidth.

  • PDF

Precipitation of Eu3+ - Yb3+ Codoped ZnAl2O4 Nanocrystals on Glass Surface by CO2 Laser Irradiation

  • Bae, Chang-hyuck;Lim, Ki-Soo;Babu, P.
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.79-84
    • /
    • 2018
  • We present a novel and simple method to enable spatially selective $ZnAl_2O_4$ nanocrystal formation on the surface of $B_2O_3$-$Al_2O_3$-ZnO-CaO-$K_2O$ glass by employing localized laser heating. Optimized precipitation of glass-ceramics containing nanocrystals doped with $Eu^{3+}$ and $Yb^{3+}$ ions was performed by controlling $CO_2$ laser power and scan speed. Micro-x-ray diffraction and transmission electron microscopy revealed the mean size and morphology of nanocrystals, and energy dispersive x-ray spectroscopy showed the lateral distribution of elements in the imaged area. Laser power and scan speed controled annealing temperature for crystalization in the range of 1.4-1.8 W and 0.01-0.3 mm/s, and changed the size of nanocrystals and distribution of dopant ions. We also report more than 20 times enhanced downshift visible emission under ultraviolet excitation, and 3 times increased upconversion emission from $Eu^{3+}$ ions assisted by efficient sensitizer $Yb^{3+}$ ions in nanocrystals under 980 nm excitation. The confocal microscope revealed the depth profile of $Eu^{3+}$ ions by showing their emission intensity variation.