DOI QR코드

DOI QR Code

Effect of ACF and WO3 from ACF/WO3/TiO2 Composite Catalysts on the Photocatalytic Degradation of MO Under Visible Light

  • Meng, Ze-Da (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Song, Da-Ye (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Zhu, Lei (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Park, Chong-Yeon (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Choi, Jong-Geun (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
  • Received : 2011.06.27
  • Accepted : 2011.07.21
  • Published : 2011.07.31

Abstract

ACF and $WO_3$ modified $TiO_2$ composites (ACF/$WO_3$/$TiO_2$) were prepared using a sol-gel method. The composites were characterized by Brunauer.Emmett.Teller (BET) surface area measurements, X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis and scanning electron microscope (SEM) analysis. A methyl orange (MO) solution under visible light irradiation was used to determine the photocatalytic activity. The degradation of the MO was determined using UV/Vis spectrophotometry. An increase in photocatalytic activity was observed and attributed to an increase of the photo-absorption effect by the $WO_3$ and the cooperative effect of the ACF.

Keywords

References

  1. N. N. Lichtin, M. Avudathai, E. Berman, and A. Grayfer, "$TiO_2$-Photocatalyzed Oxidative Degradation of Binary Mixtures of Vaporized Organic Compounds," Sol. Energy, 56 377-85 (1996). https://doi.org/10.1016/0038-092X(96)00014-X
  2. C. Minero, E. Pelizzetti, S. Malato, and J. Blanco, "Large Solar Plant Photocatalytic Water Decontamination: Degradation of Atrazine," Sol. Energy, 56 411-19 (1996). https://doi.org/10.1016/0038-092X(96)00028-X
  3. L. A. Dibble and G. B. Raupp, "Fluidized-bed Photocatalytic Oxidation of Trichloroethylene in Contaminated Air Streams," Environ. Sci. Technol., 28 492-95 (1992).
  4. A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode," Nature, 238 37-8 (1972). https://doi.org/10.1038/238037a0
  5. P. Ameta, R. Ameta, R. C. Ameta, and S. C. Ameta, "Use of Semiconductor Oxides in the Photocatalytic Reaction of Sodium Hexanitrocobaltate (III)," J. Photochem. Photobilogy A: Chem., 103 133-36 (1997). https://doi.org/10.1016/S1010-6030(96)04502-9
  6. Y. X. Li and F. Wasgestian, "Photocatalytic Reductionof Nitrate Ions on $TiO_2$ by Oxalic Acid," J. Photochem. Photobiol. A: Chem., 112 255-59 (1998). https://doi.org/10.1016/S1010-6030(97)00293-1
  7. K. T. Ranjit, R. Krishnamoorthy, and B. Viswanathan, "Photocatalytic Reduction of Nitrite and Nitrate on ZnS," J. Photochem. Photobiol. A: Chem., 81 55-8 (1994). https://doi.org/10.1016/1010-6030(93)03772-9
  8. T. Huang, X. P. Lin, J. C. Xing, W. D. Wang, Z. C. Shan, and F. Q. Huang, "Photocatalytic Activities of Hetero-junction Semiconductors $WO_3/SrNb_2O_6$," Mater. Sci. Eng. B, 141 49-54 (2007). https://doi.org/10.1016/j.mseb.2007.05.007
  9. J. F. Porter and Y. G. Li, "Effect of Calcinations on the Microstructural Characteristic and Photoreactivity of Degussa P-25 $TiO_2$," J. Mater. Sci., 34 1523-31 (1999). https://doi.org/10.1023/A:1004560129347
  10. Y. Bessekhouad, N. Chaoui, M. Trzpit, N. Ghazzal, D. Robert, and J. V. Weber, "UV-vis Versus Visible Degradation of Acid Orange II in a Coupled $CdS/TiO_2$ Semiconductors Suspension," J. Photochem. Photobiol. A, 183 218-24 (2006). https://doi.org/10.1016/j.jphotochem.2006.03.025
  11. W. Xie, Y. Z. Li, W. Sun, J. C. Huang H. Xie, and X. J. Zhao, "Surface Modification of ZnO with Ag Imoroves Its Photocatalytic Efficiency and Photostability," J. Photochem. Photobiol. A: Chem., 216 2-3 (2010).
  12. A. Fujishima, T. N. Rao, and D. A. Tryk, "Titanium Dioxide Photocatalysis," J. Photochem. Photobiol. C, 11-21 (2000).
  13. M. R. Hoffmann, S. T. Martin, W. Y. Choi, and D. W. Bahnemann, "Environmental Applications of Semiconductor Photocatalysis," Chem. Rev., 95 69-96 (1995). https://doi.org/10.1021/cr00033a004
  14. M. Asilturk, F. Saylkan, and E. Arpac, "Effect of $Fe^{3+}$ Ion Doping to $TiO_2$ on the Photocatalytic Degradation of Malachite Green Dye Under UV and Vis-irradiation," J. Photochem. Photobiol. A, 203 64-71 (2009). https://doi.org/10.1016/j.jphotochem.2008.12.021
  15. M. Andersson, L. Osterlund, S. Ljungstrom, and A. Palmqvist, "Preparation of Nanosize Anatase and Rutile $TiO_2$ by Hydrothermal Treatment of Microemulsions and Their Activity for Photocatalytic Wet Oxidation of Phenol," J. Phys. Chem. B, 106 10674-79 (2002). https://doi.org/10.1021/jp025715y
  16. H. Tada, A. Hattori, Y. Tokihisa, K. Imai, N. Tohge, and S. Ito, "A Patterned-$TiO_2/SnO_2$ Bilayer Type Photocatalyst," J. Phys. Chem. B, 104 4585-87 (2000). https://doi.org/10.1021/jp000049r
  17. J. G. Yu, W. Liu, and H. G. Yu, "A One-pot Approach to Hierarchically Nanoporous Titania Hollow Microspheres with High Photocatalytic Activity," Cryst. Growth Des., 8 930-34 (2008). https://doi.org/10.1021/cg700794y
  18. T. Mori, J. Suzudi, K. Fujimoto, M. Watanabe, and Y. Hasegawa, "Reductive Decomposition of Nitrate Ion to Nitrogen in Water on a Unque Hollandite Photocatalyst," Appl. Catal. B, 23 283-89 (1999). https://doi.org/10.1016/S0926-3373(99)00086-7
  19. T. M. Wang, H. Y. Wang, P. Xu, X. C. Zhao, Y. L. Liu, and S. Chao, "The Effect of Properties of Semiconductor Oxide Thin Film on Photocatalytic Decomposition of Dyeing Waste Water," Thin Solid Film, 334 103-8 (1998). https://doi.org/10.1016/S0040-6090(98)01125-0
  20. H. Kominami, A. Furusho, S. Murakami, H. Inoue, Y. Kera, and B. Ohtani, "Effective Photocatalytic Reduction of Nitrate to Ammonia in an Aqueous Suspension of Metal-loaded Titanium (IV) Oxide Particles in the Presence of Oxalic Acid," Catal. Lett., 76 31-4 (2001). https://doi.org/10.1023/A:1016771908609
  21. V. Iliev, D. Tomova, S. Rakovsky, A. Eliyas, and G. L. Puma, "Enhancement of Photocatalytic Oxidation of Oxalic Acid by Gold Modified $WO_3/TiO_2$ Photocatalysts Under UV and Visible Light Irradiation," J. Mol. Catal. A: Chem., 327 51-7 (2010). https://doi.org/10.1016/j.molcata.2010.05.012
  22. V. Puddu, R. Mokaya, and G. L. Puma, "Novel One Step Hydrothermal Synthesis of $TiO_2/WO_3$ Nanocomposites with Enhanced Photocatalytic Activity," Chem. Commun., 2007 4749-51 (2007).
  23. V. Keller, P. Bernhardt, and F. Garin, "Photocatalytic Oxidation of Butyl Acetate in Vapor Phase on $TiO_2$, $Pt/TiO_2$ and $WO_3/TiO_2$ Catalysts," J. Catal., 215 129-38 (2003). https://doi.org/10.1016/S0021-9517(03)00002-2
  24. X. Z. Li, F. B. Li, C. L. Yang, and W. K. Ge, "Photocatalytic Activity of $WOx-TiO_2$ under Visible Light Irradiation," J. Photochem. Photobiol. A, 141 209-17 (2001). https://doi.org/10.1016/S1010-6030(01)00446-4
  25. H. Q. Wang, Z. B. Wu, and Y. Liu, "A Simple Two-step Template Approach for Preparing Carbon-doped Mesoporous $TiO_2$ Hollow Microspheres," J. Phys. Chem. C, 113 13317-24 (2009). https://doi.org/10.1021/jp9047693
  26. E. J. Wolfrum, J. Huang, D. M. Blake, P. C. Maness, Z. Huang, J. Fiest, and W. A. Jacoby, "Photocatalytic Oxidation of Bacteria, Bacterial and Fungal Spores, and Model Biofilm Components to Carbon Dioxide on Titanium Dioxide-coated Surfaces," Environ. Sci. Technol., 36 3412-19 (2002). https://doi.org/10.1021/es011423j
  27. S. U. M. Khan, M. Al-Shahry, and W.B. Ingler, "Efficient Photochemical Water Splitting by a Chemically Modified n-$TiO_2$," Science, 297 2243-45 (2002). https://doi.org/10.1126/science.1075035
  28. X. W. Zhang, M. H. Zhou, and L. C. Lei, "Preparation of Photocatalytic $TiO_2$ Coating of Nanosized Particles Supported on Activated Carbon by AP-MOCVD," Carbon, 43 1700-8 (2005). https://doi.org/10.1016/j.carbon.2005.02.013
  29. C. C. Chan, C. C. Chang, W. C. Hsu, S. K. Wang, and J. Lin, "Photocatalytic Activities of Pd-loaded Mesoporous $TiO_2$ Thin Films," Chem. Eng. J., 152 492-7 (2009). https://doi.org/10.1016/j.cej.2009.05.012
  30. H. Gerischer and M. Lubke, "A Particle Size Effect in the Sensitization of $TiO_2$ Electrodes by a CdS Deposit," J. Electroanal. Chem., 204 225-7 (1986). https://doi.org/10.1016/0022-0728(86)80520-4
  31. T. Sauer, G. Cesconeto Neto, H. J. Jose, and R. F. P. M. Moreira, "Kinetics of Photocatalytic Degradation of Reactive Dyes in a $TiO_2$ Slurry Reactor," J. Photochem. Photobiol. A: Chem., 149 147-54 (2002). https://doi.org/10.1016/S1010-6030(02)00015-1
  32. W. C. Oh, J. H. Son, F. J. Zhang, and M. L. Cheng, "Fabrication of $Ni-AC/TiO_2$ Composites and their Photocatalytic Activity for Degradation of Methylene Blue," J. Kor. Ceram. Soc., 46 [1] 1-9 (2009). https://doi.org/10.4191/KCERS.2009.46.1.001
  33. Z. D. Meng, K. Zhang, and W. C. Oh, "Preparation of Different Fe Containing $TiO_2$ Photocatalysts and Comparision of Their Photocatalytic Activity," Kor. J. Mater. Re., 20 228-34 (2010). https://doi.org/10.3740/MRSK.2010.20.4.228
  34. D. N. Ke, H. J. Liu, T. Y. Peng, X. Liu, and K. Dai, "Preparation and Photocatalytic Activity of $WO_3/TiO_2$ Nanocomposite Particles," Mater. Lett., 62 447-50 (2008). https://doi.org/10.1016/j.matlet.2007.05.060
  35. M. W. Xiao, L. S. Wang, X. J. Huang, Y. D. Wu, and Z. Dang, Synthesis and Characterization of $WO_3/titanate$ Nanotubes Nanocomposite with Enhanced Photocatalytic Properties," J. Alloys Compd., 470 486-91 (2009). https://doi.org/10.1016/j.jallcom.2008.03.003
  36. K. K. Akurati, A. Vital, J. P. Dellemann, K. Michalow, T. Graule, D. Ferri, and A. Baiker, "Flame-made$WO_3/TiO_2$ Nanoparticles: Relation Between Surface Acidity, Structure and Photocatalytic Activity," Appl. Catal. B., 79 53-62 (2008). https://doi.org/10.1016/j.apcatb.2007.09.036
  37. Saepurahman, M. A. Abdullah, and F. K. Chong, "Preparation and Characterization of Tungsten-loaded Titanium Dioxide Photocatalyst for Enhanced Dye Degradation," J. Hazard. Mater., 176 451-558 (2010). https://doi.org/10.1016/j.jhazmat.2009.11.050
  38. J. Kasanen, M. Suvanto, and T. T. Pakkanen, "UV Stability of Polyurethane Binding Agent on Multilayer Photocatalytic $TiO_2$ Coating," Polymer Testing, 30 381-9 (2011). https://doi.org/10.1016/j.polymertesting.2011.02.006
  39. H. Yang, R. Shi, K. Zhang, Y. Hu, A. Tang, and X. Li, "Syn-Thesis of $WO_3/TiO_2$ Nanocomposites Via Sol-gel Method," J. Alloys Compd., 398 200-202 (2005). https://doi.org/10.1016/j.jallcom.2005.02.002
  40. A. Rampaul, I. P. Parkin, S. A. O' Neill, J. Desouza, A. Mills, and N. Elliot, "Titania and Tungsten Doped Titania Thin Films on Glass; Active Photocatalysts," Polyhedron, 22 35-44 (2003). https://doi.org/10.1016/S0277-5387(02)01333-5
  41. M. R. Bayati, F. G. Fard, and A. Z. Moshfegh, "Visible Photodecomposition of Methylene Blue Over Micro Arc Oxidized$WO_3$ Loaded $TiO_2$ Nanaporous Layers," Appl. Catal. A: Gen., 382 322-31 (2010). https://doi.org/10.1016/j.apcata.2010.05.017
  42. J. He, Q. Z. Cai, Y. G. Ji, H. H. Luo, D. J. Li, and B. Yu, "Influence of Fluorine on the Structure and Photocatalytic Activity of $TiO_2$ Film Prepared in Tungstate-electrolyte Via Micro-arc Oxidation," J. Alloys Compd., 482 476-81 (2009). https://doi.org/10.1016/j.jallcom.2009.04.063
  43. K. K. Akurati, A. Vital, J. P. Dellemann, K. M. Michalow, D. Ferri, T. Graule, and A. Baiker, "Flame-made $WO_3/TiO_2$ Nanoparticles: Relation Between Surface Acidity, Structure and Photocatalytic Activity," Appl. Catal. B: Environ., 79 53-62 (2008). https://doi.org/10.1016/j.apcatb.2007.09.036
  44. J. C. Parker and R. W. Siegel, "Calibration of the Raman Spectrum to the Oxygen Stoichiometry of Nanophase, $TiO_2$," Appl. Phys. Lett., 57 943-5 (1990). https://doi.org/10.1063/1.104274
  45. M. Fernandez-Garca, A. Martnez-Arias, A. Fuerte, and J. C. Conesa, "Nanostructured Ti-W Mixed-metal Oxides: Structural and Electronic Properties," J. Phys. Chem. B, 109 6075-83 (2005). https://doi.org/10.1021/jp0465884
  46. C. Alcober, F. Alvarez, S. A. Bilmes, and R. J. Candal, "Photochromic W-$TiO_2$ Membranes, J. Mater. Sci. Lett., 21 501-504 (2002).
  47. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, "Visible-light Photocatalysis in Nitrogen-doped Titanium Oxides," Science, 293 269-71 (2001). https://doi.org/10.1126/science.1061051
  48. V. Pore, M. Ritala, M. Leskela, S. Areva, M. Jarn, and J. Jarnstrom, "$H_2S$ Modified Atomic Layer Deposition Process for Photocatalytic $TiO_2$ Thin Films," J. Mater. Chem., 17 1361-71 (2007). https://doi.org/10.1039/b617307a
  49. Z. D. Meng, L. Zhu, J. G. Choi, M. L. Chen, and W. C. Oh, "Effect of Pt Treated Fullerene/$TiO_2$ on the Photocatalytic Degradation of MO Under Visible Light," J. Mater. Chem., 21 7596-603 (2011). https://doi.org/10.1039/c1jm10301f