• Title/Summary/Keyword: Electron injection

Search Result 483, Processing Time 0.03 seconds

The Effect of Electron Injection Layer in Organic Electroluminescence Device Efficiency (전자 주입층이 유기EL소자 효율에 미치는 영향)

  • Choi, Kyung-Hoon;Sohn, Byung-Chung;Kim, Young-Kwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.297-301
    • /
    • 2002
  • We investigated the effect of electron injection layer on the performance of organic light emitting devices (OLEDs). As an electron injection layer, the quinolate metal complexes were used. We optimized the device efficiency by varying the thickness of the quinolate metal complexes layer. The device with 1 nm of the quinolate metal complexes layer showed significant enhancement of the device performance and device lifetime. We also compared the effect of 8-hydroxyquinolinolatolithium (Liq) with that of bis(8-quinolinolato)-zinc ($Znq_{2}$) and 8-hydroxyquinolinolatosodium (Naq) as an electron injection layer. As a result, Liq is considered as a better materials for the electron injection layer than $Znq_{2}$ and Naq.

Trapping and Detrapping of Transport Carriers in Silicon Dioxide Under Optically Assisted Electron Injection

  • Kim, Hong-Seog
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.3
    • /
    • pp.158-166
    • /
    • 2001
  • Based on uniform hot carrier injection (optically assisted electron injection) across the $Si-SiO_2$ interface into the gate insulator of n-channel IGFETs, the threshold voltage shifts associated with electron injection of $1.25{\times}l0^{16}{\;}e/\textrm{cm}^2 between 0.5 and 7 MV/cm were found to decrease from positive to negative values, indicating both a decrease in trap cross section ($E_{ox}{\geq}1.5 MV/cm$) and the generation of FPC $E_{ox}{\geq}5{\;}MV/cm$). It was also found that FNC and large cross section NETs were generated for $E_{ox}{\geq}5{\;}MV/cm$. Continuous, uniform low-field (1MV/cm) electron injection up to $l0^{19}{\;}e/\textrm{cm}^2 is accompanied by a monatomic increase in threshold voltage. It was found that the data could be modeled more effectively by assuming that most of the threshold voltage shift could be ascribed to generated bulk defects which are generated and filled, or more likely, generated in a charged state. The injection method and conditions used in terms of injection fluence, injection density, and temperature, can have a dramatic impact on what is measured, and may have important implications on accelerated lifetime measurements.

  • PDF

Electrical Properties of OLEDs depending on Thickness variation of Electron Injection Layer (전자 주입층의 두께 변화에 따른 OLEDs의 전기적 특성)

  • Cha, Ki-Ho;Lee, Young-Hwan;Lee, Jong-Yong;Chung, Dong-Hoe;Shin, Jong-Yeol;Kim, Tae-Wan;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.69-70
    • /
    • 2006
  • We studied increasement of efficiency of Organic Light-emitting Diodes depending on thickness variation of LiF, Material of Electron Injection Layer in structure of ITO/Hole Injection Layer (PTFE)/Hole Transportion Later (TPD)/Emitting Layer (Alq3)/Electron Injection Layer (LiF)/Al. TPD and $Alq_3$ is deposited as rate of 1.3~1.5 [${\AA}/s$] in high vacuum ($5{\times}10^{-6}$ [torr]). In result of these studies, we can know maximum efficiency in 0.7 [nm], thickness of LiF. And samples with electron injection material are increased about 5-fold in maximum efficiency in compare with sample without electron injection material.

  • PDF

Study on the Electron Injection of Newly Synthesized Organic Sensitizer in Dye-Sensitized Solar Cell

  • Gang, Tae-Yeon;Lee, Do-Gwon;Go, Min-Jae;Kim, Gyeong-Gon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.310-310
    • /
    • 2010
  • Electronic and photovoltaic characteristics of two sensitizers (TA-BTD-CA and TA-BTD-St-CA), composed of a different $\pi$-conjugation in the linker group, have been investigated by theoretical and experimental methods. The electronic structure, transition dipole moment and oscillator strengths of two sensitizers have been scrutinized by using density functional theory (DFT) and time-dependent DFT (TD-DFT) method. The LUMO level and the oscillator strength of TA-BTD-St-CA was higher than that of TA-BTD-CA, which may facilitate the electron injection process as well as increase the absorption coefficient. The relative efficiencies of the electron injection from the excited sensitizer to nanocrystalline TiO2 and SnO2 films have also been investigated by nanosecond transient absorption spectroscopy. The relative electron injection efficiency of TA-BTD-St-CA exhibited similar injection efficiency for two different semiconductors. However, in the case of TA-BTD-CA sensitizer, electron injection into SnO2 was approximately three times larger than that into TiO2. This enhancement of electron injection of TA-BTD-CA for the SnO2 is due to the increment of the driving force caused by positive shift of conduction band of semiconductor, which was also confirmed from the investigation for the photovoltaic characteristics according to the electrolyte additive, such as LiI additive.

  • PDF

Improved Electron Injection on Organic Light-emitting Diodes with an Organic Electron Injection Layer

  • Kim, Jun-Ho;Suh, Chung-Ha;Kwak, Mi-Young;Kim, Bong-Ok;Kim, Young-Kwan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.5
    • /
    • pp.221-224
    • /
    • 2005
  • To overcome of poor electron injection in organic light-emitting diodes (OLEDs) with Al cathode, a thin layer of inorganic insulating materials, like as LiF, is inserted between an Al cathode and an organic electron transport layer. Though the device, mentioned above, improves both turn on voltage and luminescent properties, it has some problems like as thickness restriction, less than 2 nm, and difficulty of deposition control. On the other hand, Li organic complex, Liq, is less thickness restrictive and easy to deposit and it also enhances the performance of devices. This paper reports the improved electron injection on OLEDs with another I A group metal complex, Potassium quinolate (Kq), as an electron injection material. OLEDs with organic complexes showed improved turn-on voltage and luminous efficiency which are remarkably improved compared to OLEDs with Al cathode. Especially, OLEDs with Kq have longer life time than OLEDs with Liq.

Interfacial Electronic Structures for Electron and Hole Injection in Organic Devices: Nanometer Layers of CsN3 and 1,4,5,8,-naphthalene-tetracarboxylic-dianhydride (NTCDA)

  • Yi, Yeon-Jin;Jeon, Pyeongeu;Lee, Jai-Hyun;Jeong, Kwang-Ho;Kim, Jeong-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.90-90
    • /
    • 2012
  • The electron/hole injections in organic electronic devices have long been an issue due to the large energy level mismatches between electrode and organic layer. To utilize the organic materials in electronic devices, functional thin layers have been used, which reduce the electron/hole injection barrier from electrode to organic material. Typically, inorganic compounds and organic molecules are used as an electron and hole injection layer, respectively. Recently, CsN3 and 1,4,5,8,- naphthalene-tetracarboxylic-dianhydride (NTCDA) are reported as a potential electron and hole injection layers. CsN3 shows unique properties that it breaks into Cs and N and thus Cs can dope organic layer into n-type. On the other side, hole injection anode, NTCDA forms gap states with anode material. In this presentation, we show the electronic structure changes upon the insertion of CsN3 and NTCDA at proper interfaces to reduce the charge injection barriers. These barrier reductions are correlated with device characteristics.

  • PDF

Study of Electron Injection of Pentacene Field Effect Transistor with Au Electrodes by C-V and SHG Measurements

  • Lim, Eun-Ju;Manaka, Takaaki;Tamura, Ryosuke;Ohshima, Yuki;Iwamoto, Mitsumasa
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.4
    • /
    • pp.151-155
    • /
    • 2008
  • Using pentacene field effect transistors (FETs) with Au source and drain electrodes, electron injection from the Au electrodes into the pentacene was investigated. The capacitance-voltage (C-V) and optical second harmonic generation (SHG) measurements were employed. Electron injection from the Au electrodes was suggested by the hysteresis behavior with the C-V characteristics and slowly decaying SHG signal under DC biasing, A mechanism of hole-injection assisted by trapped electrons is proposed. To confirm electron injection process, light-emitting behavior under the application of AC applied voltage was observed.

CHARACTERISTICS OF ORGANIC LIGHT-EMITTING DIODES FOR THE DEVICES WITH ELECTRON INJECTION LAYER (LIF AND $LI_2O$) (전자주입층(LiF와 $Li_2O$)을 사용한 유기 발광 소자의 특성)

  • Shin, Eun-Chul;An, Hui-Chul;Lee, Ho-Sik;Song, Min-Jong;Lee, Won-Jae;Han, Wone-Keun;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.439-440
    • /
    • 2007
  • To enhance the electron injection from the cathode of organic light-emitting diodes (OLEDs), We have studied characteristics of device that electron injection layer(EIL) is inserted between emissive layer and cathode. We fabricated bi-layer cathode $Li_2O$(x nm)/Al(100nm) and LiF(x nm)/Al(100nm) using LiF and $Li_2O$ as an electron injection layer. We analyzed the current efficiency, luminance efficiency, and external quantum efficiency of the device by varying the thickness of $Li_2O$ and LiF to be 0.5nm, 1nm, or 3nm. Using the EIL, we have obtained the efficiency of 7cd/A and the luminance of $20,000cd/m^2$. There is an improvement of efficiency by more than 3 times than the device without the $Li_2O$ layer.

  • PDF

Study of OLED luminescence efficiency by electron Injection layer change (유기발광 소자의 전자 주입층 두께 변화에 따른 발광효율 연구)

  • Lee, Jung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.555-558
    • /
    • 2004
  • The efficiency of electron injection from the cathode is strongly dependent on the thickness of the LiF buffer-layer. We used LiF to electron Injection layer. We compared characteristics of organic light emitting device changing LiF thin film thickness from 1.0 m to 10.0 nm. Experiment result, we found that LiF thickness has the optimized electrical characteristics in 3.0 m. In this paper, we did research about electrical characteristics of organic light emitting device by LiF thickness change using method numerical analysis method. We proved adequate experimental results that compare results of numerical analysis, and come out through an experiment results is validity.

  • PDF

The Electron Injection-induced Slow Current Transients in Metal-Oxide-Semiconductor Capacitors (금속-산화막-반도체(MOS) 소자에서의 전자주입에 따른 느린 준위의 전류 응답 특성 연구)

  • 최성우;전현구;안병철;노관종;노용한
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.216-219
    • /
    • 1999
  • A simple two-terminal cyclic current-voltage(I-V) technique is used to measure the current-transients in MOS capacitors. Distinct charging/discharging currents were measured and analyzed as a function of (1) the hold time. (2) the gate polarity during the FNT electron injection, (3) the injection fluence and (4) the annealing time after the injection had stopped. Discharging and charging current-transients were strongly dependent upon the conditions for forming the inversion layer and the density of interface traps caused during the FNT electron injection, respectively. Several tentative mechanisms were suggested in the current work.

  • PDF