• Title/Summary/Keyword: Electron emission

Search Result 2,177, Processing Time 0.027 seconds

Characteristic Studies for Scan-Field Size and Visibility of Current Image in a Low Voltage Micro-Column (저 전압 초소형 전자칼럼의 주사면적 크기 및 전류영상 특성 연구)

  • Noriyuki, Ichimura;Kim, Young-Chul;Kim, Ho-Seob;Jang, Won-Kweon
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.5
    • /
    • pp.365-369
    • /
    • 2008
  • The optimal condition for focusing an electron beam was investigated employing an electrostatic deflector in a low voltage micro-column. At fixed voltage of the electron emission tip, the focusing electron beam with source lens showed a larger scan field size and poorer visibility than those with an Einzel lens. Theoretical 3-D simulation indicated that a focusing electron beam with a source lens should have a larger spot size and deflection than those of a focusing Einzel lens.

Emission Characteristics of Red OLEDs in the Emitting Layer Position Doped with DCM2 and Rubrene (DCM2와 Rubrene이 첨가된 발광층 위치에 따른 적색 OLED의 발광 특성)

  • Jung, Haeng-Yun;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.8
    • /
    • pp.664-668
    • /
    • 2011
  • In this study, we have fabricated the red OLED (organic light emitting diode). The basic device structure is ITO/hole transporting layer, TPD(500 $\AA$)/red emitting layer, Alq3 doped with DCM2:rubrene(20 $\AA$)/electron transporting layer, Alq3(M) (500 $\AA$-M $\AA$)/LiF(15 $\AA$)/Al(1,000 $\AA$). The thickness of electron transporting layer(500 $\AA$-M $\AA$) changed 0, 20, 40, 60 $\AA$. Turn on voltage of the red OLED was 5 V, 6 V, 6.5 V and 7.5 V, respectively with electron transfer layer changed ratio. Luminance of red OLED was 4,504, 1,840, 1,490 and 1,130 cd/$m^2$, respectively. Optimized electron transfer layer position changed ratio of the red OLED was 0 $\AA$.

Nitrate Reduction by Fe(0)/iron Oxide Mineral Systems: A Comparative Study using Different Iron Oxides (영가철과 여러 가지 산화철 조합공정을 이용한 질산성질소 환원에 관한 연구)

  • Song, Hocheol;Jeon, Byong-Hun;Cho, Dong-Wan
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.1
    • /
    • pp.63-69
    • /
    • 2014
  • This paper presents the feasibility of using different iron oxides (microscale hematite (HT), microscale magnetite (MT), and nanoscale maghemite (NMH)) in enhancing nitrate reduction by zero-valent iron (Fe(0)) under two solution conditions (artificial acidic water and real groundwater). Addition of MT and NMH into Fe(0) system resulted in enhancement of nitrate reduction compared to Fe(0) along reaction, especially in groundwater condition, while HT had little effect on nitrate reduction in both solutions. Field emission scanning electron microscopy (FESEM) analysis showed association of MT and NMH with Fe(0) surface, presumably due to magnetic attraction. The rate enhancement effect of the minerals is presumed to arise from its role as an electron mediator that facilitated electron transport from Fe(0) to nitrate. The greater enhancement of MT and NMH in groundwater was attributed to surface charge neutralization by calcium and magnesium ions in groundwater, which in turn facilitated adsorption of nitrate on Fe(0) surface.

Recent progress in the theoretical understanding of relativistic electron scattering and precipitation by electromagnetic ion cyclotron waves in the Earth's inner magnetosphere

  • Lee, Dae-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.45-60
    • /
    • 2019
  • The Earth's outer radiation belt has long received considerable attention mainly because the MeV electron flux in the belt varies often dramatically and at various time scales. It is now widely accepted that the wave-particle interaction is one of the major mechanisms responsible for such flux variations. The wave-particle interaction can accelerate electrons to MeV energies, explaining the observed flux increase events, and can also scatter the electrons' motion into the loss cone, resulting in atmospheric precipitation and thus contributing to flux dropouts. In this paper, we provide a review of the current state of research on relativistic electron scattering and precipitation due to the interaction with electromagnetic ion cyclotron (EMIC) waves in the inner magnetosphere. The review is intended to cover progress made over the last ~15 years in the theory and simulations of various issues, including quasilinear resonance diffusion, nonlinear interactions, nonresonant interactions, effects of finite normal angle on pitch angle scattering, effects due to rising tone emission, and ways to scatter near-equatorial pitch angle electrons. The review concludes with suggestions of a few promising topics for future research.

Electron Pre-acceleration in Weak Quasi-perpendicular Shocks in Clusters of Galaxies

  • Ha, Ji-Hoon;Kang, Hyesung;Ryu, Dongsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.49.1-49.1
    • /
    • 2019
  • Giant radio relics in the outskirts of galaxy clusters have been observed and they are interpreted as synchrotron emission from relativistic electrons accelerated via diffusive shock acceleration (DSA) in weak shocks of Ms < 3.0. In the DSA theory, the particle momentum should be greater than a few times the momentum of thermal protons to cross the shock transition and participate in the Fermi acceleration process. In the equilibrium, the momentum of thermal electrons is much smaller than the momentum of thermal protons, so electrons need to be pre-accelerated before they can go through DSA. To investigate such electron injection process, we study the electron pre-acceleration in weak quasi-perpendicular shocks (Ms = 2.0 - 3.0) in an ICM plasma (kT = 8.6 keV, beta = 100) through 2D particle-in-cell simulations. It is known that in quasi-perpendicular shocks, a substantial fraction of electrons could be reflected upstream, gain energy via shock drift acceleration (SDA), and generate oblique waves via the electron firehose instability (EFI), leading the energization of electrons through wave-particle interactions. We find that such kinetic processes are effective only in supercritical shocks above a critical Mach number, $Ms{\ast}{\sim}2.3$. In addition, even in shocks with Ms > 2.3, energized electrons may not reach high energies to be injected to DSA, because the oblique EFI alone fails to generate long-wavelength waves. Our results should have implications for the origin and nature of radio relics.

  • PDF

Solution-Processed Quantum Dot Light-Emitting Diodes with TiO2 Nanoparticles as an Electron Transport Layer and a PMMA Insulating Layer (TiO2를 전자수송층으로 적용하고 PMMA 절연층을 삽입한 용액공정 기반 양자점 전계 발광 소자의 활용)

  • Kim, Bomi;Kim, Jungho;Kim, Jiwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.93-97
    • /
    • 2022
  • We report highly efficient quantum dot light-emitting diodes (QLEDs) with TiO2 nanoparticles (NPs) as an alternative electron transport layer (ETL) and poly (methyl methacrylate) (PMMA) as an insulating layer. TiO2 NPs were applied as ETLs of inverted structured QLEDs and the effect of the addition of PMMA between ETL and emission layer (EML) on device characteristics was studied in detail. A thin PMMA layer supported to make the charge balance in the EML of QLEDs due to its insulating property, which limits electron injection effectively. Green QLEDs with a PMMA layer produced the maximum luminance of 112,488 cd/m2 and a current efficiency of 25.92 cd/A. We expect the extended application of TiO2 NPs as the electron transport layer in inverted structured QLEDs device in the near future.

Effects of Eu3+ and Tb3+ Activator Ions on the Properties of SrSnO3 Phosphors (Eu3+와 Tb3+ 활성제 이온이 SrSnO3 형광체의 특성에 미치는 영향)

  • Kim, Jung Dae;Cho, Shinho
    • Korean Journal of Materials Research
    • /
    • v.24 no.9
    • /
    • pp.469-473
    • /
    • 2014
  • $SrSnO_3$ phosphor powders were synthesized with two different contents of activator ions $Eu^{3+}$ and $Tb^{3+}$ using the solid-state reaction method. The structural, morphological, and optical properties of the phosphors were investigated using X-ray diffractometry, field-emission scanning electron microscopy, and fluorescence spectrophotometry, respectively. All the phosphors showed a cubic structure, irrespective of the type and the content ratio of activator ions. For $Eu^{3+}$-doped $SrSnO_3$ phosphors, the intensity of the 620 nm red emission spectrum resulting from the $^5D_0{\rightarrow}^7F_2$ transition of $Eu^{3+}$ was stronger than that of the 595 nm orange emission signal due to the $^5D_0{\rightarrow}^7F_1$ transition in the range 0.01-0.05 mol of $Eu^{3+}$, but the ratio of the intensity was reversed in the range 0.10-0.20 mol of $Eu^{3+}$. The variation in the emission intensity indicates that the site symmetry of the $Eu^{3+}$ ions around the host crystal was changed from non-inversion symmetry to inversion. For the $Tb^{3+}$-doped $SrSnO_3$ phosphors under excitation at 281 nm, one strong green emission band at 550 nm and several weak bands were observed. These results suggest that the optimum red and green emission signals can be realized when the activator ion content for $Eu^{3+}$- or $Tb^{3+}$-doped $SrSnO_3$ phosphors is 0.20 mol and 0.15 mol, respectively.

Synthesis and Photoluminescence Properties of Dy3+- and Eu3+-codoped CaMoO4 Phosphors (Dy3+와 Eu3+ 이온이 동시 도핑된 CaMoO4 형광체의 합성과 발광 특성)

  • Kim, Junhan;Cho, Shinho
    • Journal of Surface Science and Engineering
    • /
    • v.48 no.3
    • /
    • pp.82-86
    • /
    • 2015
  • $Dy^{3+}$- and $Eu^{3+}$-codoped $CaMoO_4$ Phosphors were synthesized by using the solid-state reaction method. The crystal structure, morphology, and optical properties of the resulting phosphor particles were investigated by using the X-ray diffraction, field-emission scanning electron microscopy, and photoluminescence spectroscopy. XRD patterns exhibited that all the synthesized phosphors showed a tetragonal system with a main (112) diffraction peak, irrespective of the content of $Eu^{3+}$ ions. As the content of $Eu^{3+}$ ions increased, the grains showed a tendency to agglomerate. The excitation spectra of the synthesized powders were composed of one strong broad band centered at 305 nm in the range of 220 - 350 nm and several weak peaks in the range of 350 - 500 nm resulting from the 4f transitions of activator ions. Upon ultraviolet excitation at 305 nm, the yellow emission line due to the $^4F_{9/2}{\rightarrow}^6H_{13/2}$ transition of $Dy^{3+}$ ions and the main red emission spectrum resulting from the $^5D_0{\rightarrow}^7F_2$ transition of $Eu^{3+}$ ions were observed. With the increase of the content of $Eu^{3+}$, the intensity of the yellow emission band gradually decreased while that of the red emission increased. These results indicated that the emission intensities of yellow and red emissions could be modulated by changing the content of the $Dy^{3+}$ and $Eu^{3+}$ ions incorporated into the host crystal.

Dynamics of Nanopore on the Apex of the Pyramid

  • Choi, Seong-Soo;Yamaguchi, Tokuro;Park, Myoung-Jin;Kim, Sung-In;Kim, Kyung-Jin;Kim, Kun-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.187-187
    • /
    • 2012
  • In this report, the plasmonic nanopores of less than 5 nm diameter were fabricated on the apex of the pyramidal cavity array. The metallic pyramidal pit cavity can also utilized as the plasmonic bioreactor, and the fabricated Au or Al metallic nanopore can provide the controllable translocation speed down using the plasmonic optical force. Initially, the SiO2 nanopore on the pyramidal pit cavity were fabricated using conventional microfabrication techniques. Then, the metallic thin film was sputter-deposited, followed by surface modification of the nanometer thick membrane using FESEM, TEM and EPMA. The huge electron intensity of FESEM with ~microsecond scan speed can provide the rapid solid phase surface transformation. However, the moderate electron beam intensity from the normal TEM without high speed scanning can only provide the liquid phase surface modification. After metal deposition, the 100 nm diameter aperture using FIB beam drilling was obtained in order to obtain the uniform nano-aperture. Then, the nanometer size aperture was reduced down to ~50 nm using electron beam surface modification using high speed scanning FESEM. The followed EPMA electron beam exposure without high speed scanning presents the reduction of the nanosize aperture down to 10 nm. During these processes, the widening or the shrinking of the nanometer pore was observed depending upon the electron beam intensity. Finally, using 200 keV TEM, the diameter of the nanopore was successively down from 10 nm down to 1.5 nm.

  • PDF

Installation for Preparing of Nanopowders by Target Evaporation with Pulsed Electron Beam

  • Sokovnin S. Yu.;Kotov Yu. A.;Rhee C. K.
    • Journal of Powder Materials
    • /
    • v.12 no.3
    • /
    • pp.167-173
    • /
    • 2005
  • Production of weakly agglomerated nanopowders with the characteristic size of about 10 nm and a narrow particle size distribution is still a topical problem especially if the matter is an acceptable output (>50 g/hour), a high purity of the final product, and a low (energy consumption. The available experience and literature data show that the most promising approach to production of such powders is the evaporation-condensation method, which has a set of means for heating of the target. From this viewpoint the use of pulsed electron accelerators for production of nanopowders is preferable since they allow a relatively simple adjustment of the energy, the pulse length, and the pulse repetition rate. The use of a pulsed electron accelerator provides the following opportunities: a high-purity product; only the target and the working gas will interact and their purity can be controlled; evaporation products will be removed from the irradiation zone between pulses; as a result, the electron energy will be used more efficiently; adjustment of the particle size distribution and the characteristic size of particles by changing the pulse energy and the irradiated area. Considering the obtained results, we developed a design and made an installation for production of nanopowders, which is based on a hollow-cathode pulsed gas-filled diode. The use of a hollow-cathode gas-filled diode allows producing and utilizing an electron beam in a single chamber. The emission modulation in the hollow cathode will allow forming an electron beam 5 to 100 ms long. This will ensure an exact selection of the beam energy. By now we have completed the design work, manufactured units, equipped the installation, and began putting the installation into operation. A small amount of nanopowders has been produced.