• Title/Summary/Keyword: Electron diffusion

Search Result 629, Processing Time 0.039 seconds

The evolution characteristics of incipient soot particles in ethylene/air inverse diffusion flame (에틸렌/공기 역확산 화염에서의 초기 매연 입자의 성장 특성)

  • Oh, Kwang-Chul;Lee, Uen-Do;Shin, Hyun-Dong;Lee, Eui-Ju
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.2
    • /
    • pp.38-44
    • /
    • 2004
  • The evolution of incipient soot particles has been examined by high resolution electron microscopy (HRTEM) and elemental analyzer in ethylene-air inverse diffusion flames. Laser Induced Incandescence(LII) and laser scattering methods were introduced for examining the soot volume fraction and morphological properties in combustion generated soot qualitatively. Soot particles, collected by thermophoretic sampling, were analyzed by using HRTEM to examine the nano structure of precursor particles. HRTEM micrographs apparently reveal a transformation of condensed phase of semitransparent tar-like material into precursor particles with relatively distinct boundary and crystalline which looks like regular layer structures. During this evolution histories, C/H analysis was also performed to estimate the chemical evolution of precursor particles. The changes of C/H ratio of soot particles with respect to residence time can be divided into two parts: one is a very slowly increasing regime where tar-like materials are transformed into precursor particles (inception process) the other is an increasing region with constant rate where surface growth affects the increase of C/H ratio dominantly (surface growth process). These results provide a clear picture of a transition to mature soot from precursor materials.

  • PDF

A Study of the Electrode Catalyst Migration and Aging Mechanism of PEMFC (고분자연료전지 내 촉매 이동 및 노화메커니즘에 관한 연구)

  • Lee, Yoon-Hee;Lee, Ki-Suk;Yun, Jong-Jin;Byun, Jung-Yeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.3
    • /
    • pp.256-263
    • /
    • 2012
  • We studied the degradation phenomenon of Pt catalyst in PEMFC. We used the electron microscope analysis technique including the ultra-microtome pretreatment method, FEG-SEM and TEM analysis methods for analysis of Pt nanoparticles. The Pt catalyst degradation is observed not only in electrode site but also in membrane site. We investigated these various degradation phenomena. The cathode electrode layer thickness is reduced. The size of the catalyst is increased much larger than initial size in membrane site. The catalyst moved from electrode layer to the electrolyte membrane. The rounded shape of catalyst was changed to the polygon. As a result, we found that the catalyst degradation processes of migration and coarsening occurred by the followings mechanisms; (1) dissolution of Pt ; (2) diffusion of Pt ion ; (3) Pt ion chemical reduction in membrane; (4) Coarsening of Pt particles (Ostwald ripening) ; (5) polygon shape change of Pt by {111} plane growth.

Glass optical waveguides made by electric-field-assisted $Cs^+-Na^+$ ion exchange (전기장에 의한 $Cs^+-Na^+$ 이온교환으로 제작된 유리 광도파로)

  • 김영철;원영희;조두진
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.2
    • /
    • pp.86-91
    • /
    • 1998
  • Multimode planar waveguides have been fabricated by an electric-field assisted ion exchange in soda-lime glass substrates. Measurements of the mode indices have been made and the index profiles modeled on modified Fermi function are explained by a comparative analysis with the concentration profiles obtained using an electron probe X-ray micro analyzer. The analytical measurements showed that no more than 95% of sodium ions were replaced by the cesium ions. We established formulas for guide depth, mobility, and refractive index change, given the applied electric field, the diffusion temperature, and the time. We have verified the linear relations in the formulas not only between guide and root of diffusion time but also between guide depth and the applied electric filed experimentally.

  • PDF

Correlation between rare earth elements in the chemical interactions of HT9 cladding

  • Lee, Eun Byul;Lee, Byoung Oon;Shim, Woo-Yong;Kim, Jun Hwan
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.915-922
    • /
    • 2018
  • Metallic fuel has been considered for sodium-cooled fast reactors because it can maximize the uranium resources. It generates rare earth elements as fission products, where it is reported by aggravating the fuel-cladding chemical interaction at the operating temperature. Rare earth elements form a multicomponent alloy (Ce-Nd-Pr-La-Sm-etc.) during reactor operation, where it shows a higher reaction thickness than a single element. Experiments have been carried out by simplifying multicomponent alloys for mono or binary systems because complex alloys have difficulty in the analysis. In previous experiments, xCe-yNd was fabricated with two elements, Ce and Nd, which have a major effect on the fuel-cladding chemical interaction, and the thickness of the reaction layer reached maximum when the rare earth elements ratio was 1:1. The objective of this study is to evaluate the effect and relationship of rare earth elements on such synergistic behavior. Single and binary rare earth model alloys were prepared by selecting five rare earth elements (Ce, Nd, Pr, La, and Sm). In the single system, Nd and Pr behaviors were close to diffusion, and Ce showed a eutectic reaction. In the binary system, Ce and Sm further increased the reaction layer, and La showed a non-synergy effect.

Corrosion of Fe-(8.5~36.9) wt% Cr Alloys at 600~800℃ in (N2, H2S, H2O)-Mixed Gases (Fe-(8.5~36.9) wt% Cr합금의 600~800℃, (N2,H2S,수증기)-혼합 가스분위기에서의 부식)

  • Kim, Min Jung;Lee, Dong Bok
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.3
    • /
    • pp.218-223
    • /
    • 2012
  • Fe-(8.5, 18.5, 28.3, 36.9) wt% Cr alloys were corroded between 600 and $800^{\circ}C$ for up to 70 h in a 1 atm gas mixture that consisted of 0.0242 atm of $H_2S$, 0.031 atm of water vapor, and 0.9448 atm of nitrogen gas. Their corrosion resistance increased with an increment in the Cr content. The Fe-8.5%Cr alloy corroded fast, forming thick, fragile, nonadherent scales that consisted primarily of an outer FeS layer and an inner (Fe, Cr, O, S)-mixed layer. The outer FeS layer grew into the air by the outward diffusion of $Fe^{2+}$ ions, whereas the inner mixed layer grew by the inward diffusion of oxygen and sulfur ions. At the interface of the outer and inner scales, voids developed and cracking occurred. The Fe-(18.5, 28.3, 36.9)% Cr alloys displayed much better corrosion resistance than the Fe-8.5Cr alloy, because thin $Cr_2O_3$ or $Cr_2S_3$ scales formed.

Synthesis and Electrochemical Studies of Cu(II) and Ni(II) Complexes with Tetradentate Schiff Base Ligands

  • 조기형;정병구;김정희;전승원;임채평;최용국
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.8
    • /
    • pp.850-856
    • /
    • 1997
  • A series of tetradentate Schiff-base ligands; 1,3-bis(salicylideneimino) propane, 1,4-bis(salicylideneimino)butane, and 1,5-bis(salicylideneimino)pentane, and their Cu(Ⅱ) and Ni(Ⅱ) complexes have been synthesized. The properties of ligands and complexes have been characterized by elemental analysis, IR, NMR, UV-Vis spectra, molar conductance, and thermogravimetric anaylsis. The mole ratio of Schiff base to metal at complexes was found to be 1 : 1. All complexes were four-coordinated configuration and non-ionic compound. The electrochemical redox processes of the ligands and their complexes in DMF solution containing 0.1 M TEAP as supporting electrolyte have been investigated by cyclic voltammetry, chronoamperometry, differential pulse voltammetry at glassy carbon electrode, and by controlled potential coulometry at platinum gauze electrode. The redox process of the ligands was highly irreversible, whereas redox process of Cu(Ⅱ) and Ni(Ⅱ) complexes was observed as one electron transfer process of quasi-reversible and diffusion-controlled reaction. Also the electrochemical redox potentials of complexes were affected by chelate ring size of ligands. The diffusion coefficients of Cu(Ⅱ) and Ni(Ⅱ) complexes in DMF solution were determined to be 4.2-6.6×10-6 cm2/sec. Also the exchange rate constants were determined to be 3.6-9.7×10-2 cm/sec.

Synthesis and Electrochemical Studies of Ni(Ⅱ) Complexes with Tetradentate Schiff Base Ligands

  • 정병구;임채평;국성근;조기형;최용국
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.173-179
    • /
    • 1996
  • A series of tetradentate Schiff base ligands; [1,2-bis(naphthylideneimino)ethane, 1,3-bis(naphthylideneimino)propane, 1,4-bis(naphthylideneimino)butane, and 1,5-bis(naphthylideneimino)pentane] and their Ni(Ⅱ) complexes have been synthesized. The properties of these ligands and their Ni(Ⅱ) complexes have been characterized by elemental analysis, IR, NMR, UV-vis spectra, molar conductance, and thermogravimetric analysis. The mole ratio of Schiff base to Ni(Ⅱ) metal was found to be 1:1. The electrochemical redox process of the ligands and their Ni(Ⅱ) complexes in DMF and DMSO solution containing 0.1 M tetraethyl ammonium perchlorate (TEAP) as a supporting electrolyte have been investigated by cyclic voltammetry, chronoamperometry, differential pulse voltammetry, and controlled potential coulometry at glassy carbon electrode. The redox process of the ligands was highly irreversible, whereas redox process of Ni(Ⅱ) complexes were observed as one electron transfer process in quasi-reversible and diffusion-controlled reaction. The electrochemical redox potentials of the Ni(Ⅱ) complexes were affected by the chelate ring size of ligands. The diffusion coefficients of Ni(Ⅱ) complexes containing 0.1 M TEAP in DMSO solution were determined to be 5.7-6.9 × 10-6 cm2/sec. Also the exchange rate constants were determined to be 1.8-9.5 × 10-2 cm2/sec. These values were affected by the chelate ring size of ligands.

New Design of Li[Ni0.8Co0.15Al0.05]O2 Nano-bush Structure as Cathode Material through Electrospinning

  • Nam, Yun-Chae;Lee, Seon-Jin;Kim, Hae-In;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • In this study, new morphology of NCA cathode material for lithium ion batteries was obtained through the electrospinning method. The prepared NCA nanofibers formed a nano-bush structure, and the primary particles were formed on the surface of the nanofibers. The embossing primary particles increased the surface area thus increasing the reactivity of lithium ions. The nano-bush structure could shorten the Li+ diffusion path and improve the Li+ diffusion coefficient. Scanning electron microscopy (SEM) revealed that the synthesized material consisted of nanofibers. The surface area of the nanofibers increased by primary particles was measured using atomic force microscopy (AFM). X-ray diffraction (XRD) analysis was carried out to determine the structure of the NCA nanofibers.

The high thermal stability induced by a synergistic effect of ZrC nanoparticles and Re solution in W matrix in hot rolled tungsten alloy

  • Zhang, T.;Du, W.Y.;Zhan, C.Y.;Wang, M.M.;Deng, H.W.;Xie, Z.M.;Li, H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2801-2808
    • /
    • 2022
  • The synergistic effect of ZrC nanoparticle pining and Re solution in W matrix on the thermal stability of tungsten was studied by investigating the evolution of the microstructure, hardness and tensile properties after annealing in a temperature range of 1000-1700 ℃. The results of metallography, electron backscatter diffraction pattern and Vickers micro-hardness indicate that the rolled W-1wt%Re-0.5 wt% ZrC alloy has a higher recrystallization temperature (1600 ℃-1700 ℃) than that of the rolled pure W (1200 ℃), W-0.5 wt%ZrC (1300 ℃), W-0.5 wt%HfC (1400-1500 ℃) and W-K-3wt%Re alloy fabricated by the same technology. The molecular dynamics simulation results indicated that solution Re atoms in W matrix can slow down the self-diffusion of W atoms and form dragging effect to delay the growth of W grain, moreover, the diffusion coefficient decrease with increasing Re content. In addition, the ZrC nanoparticles can pin the grain boundaries and dislocations effectively, preventing the recrystallization. Therefore, synergistic effect of solid solution Re element and dispersed ZrC nanoparticles significantly increase recrystallization temperature.

Epitaxial growth of yttrium-stabilized HfO$_2$ high-k gate dielectric thin films on Si

  • Dai, J.Y.;Lee, P.F.;Wong, K.H.;Chan, H.L.W.;Choy, C.L.
    • Electrical & Electronic Materials
    • /
    • v.16 no.9
    • /
    • pp.63.2-64
    • /
    • 2003
  • Epitaxial yttrium-stabilized HfO$_2$ thin films were deposited on p-type (100) Si substrates by pulsed laser deposition at a relatively lower substrate temperature of 550. Transmission electron microscopy observation revealed a fixed orientation relationship between the epitaxial film and Si; that is, (100)Si.(100)HfO$_2$ and [001]Si/[001]HfO$_2$. The film/Si interface is not atomically flat, suggesting possible interfacial reaction and diffusion, X-ray photoelectron spectrum analysis also revealed the interfacial reaction and diffusion evidenced by Hf silicate and Hf-Si bond formation at the interface. The epitaxial growth of the yttrium stabilized HfO$_2$ thin film on bare Si is via a direct growth mechanism without involoving the reaction between Hf atoms and SiO$_2$ layer. High-frequency capacitance-voltage measurement on an as-grown 40-A yttrium-stabilized HfO$_2$ epitaxial film yielded an dielectric constant of about 14 and equivalent oxide thickness to SiO$_2$ of 12 A. The leakage current density is 7.0${\times}$ 10e-2 A/$\textrm{cm}^2$ at 1V gate bias voltage.

  • PDF