• Title/Summary/Keyword: Electron diffraction data

Search Result 158, Processing Time 0.028 seconds

Properties of ZnO:Al Films Prepared by Spin Coating of Aged Precursor Solution

  • Shrestha, Shankar Prasad;Ghimire, Rishi;Nakarmi, Jeevan Jyoti;Kim, Young-Sung;Shrestha, Sabita;Park, Chong-Yun;Boo, Jin-Hyo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.112-115
    • /
    • 2010
  • Transparent conducting undoped and Al impurity doped ZnO films were deposited on glass substrate by spin coat technique using 24 days aged ZnO precursor solution with solution of ethanol and diethanolamine. The films were characterized by UV-Visible spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), electrical resistivity ($\rho$), carrier concentration (n), and hall mobility ($\mu$) measurements. XRD data show that the deposited film shows polycrystalline nature with hexagonal wurtzite structure with preferential orientation along (002) crystal plane. The SEM images show that surface morphology, porosity and grain sizes are affected by doping concentration. The Al doped samples show high transmittance and better resistivity. With increasing Al concentration only mild change in optical band gap is observed. Optical properties are not affected by aging of parent solution. A lowest resistivity ($8.5 \times 10^{-2}$ ohm cm) is observed at 2 atomic percent (at.%) Al. With further increase in Al concentration, the resistivity started to increase significantly. The decrease resistivity with increasing Al concentration can be attributed to increase in both carrier concentration and hall mobility.

Comparing Thermal and Chemical Decomposition of Up-Cycled Ammonium Paratungstate(APT) (업싸이클링된 암모늄 파라텡스텐의 열적 및 화학적 분해법 비교)

  • Chung, Jun-Ki;On, Jin-Ho;Kim, Sung-Jin;Park, Sang-Yeup
    • Korean Journal of Materials Research
    • /
    • v.25 no.6
    • /
    • pp.274-278
    • /
    • 2015
  • The possibility of using the chemical precipitation method of up-cycled ammonium paratungstate (APT) was studied and compared with the thermal decomposition method. $WO_3$ particles were synthesized by chemical precipitation method using a 1:2 weight ratio of APT: Di-water. For thermal decomposition, APT powder was heated for 4h at $600^{\circ}C$ in air atmosphere. The reaction products were characterized by X-ray diffraction (XRD), X-ray fluorescence spectrometer (XRF), particle size analyzer (PSA), and field emission-scanning electron microscopy (FE-SEM). Thermogravimetric analysis (TGA) of the up-cycled APT allowed for the identification of the sequence of decomposition and reduction reactions that occurred during the heat treatment. TGA data indicated a total weight loss of 10.78% with the reactions completed in $658^{\circ}C$. The XRD results showed that APT completely decomposed to $WO_3$ by thermal decomposition and chemical precipitation. The particle size of the synthesized $WO_3$ powders by thermal decomposition with 2 h of planetary milling was around $2{\mu}m$ During the chemical precipitation process, the particle size of the synthesized $WO_3$ powders showed a round-shape with ${\sim}0.6{\mu}m$ size.

Characterization of Co-AC/TiO2 Composites and Their Photonic Decomposition for Organic Dyes

  • Chen, Ming-Liang;Son, Joo-Hee;Park, Chong-Yun;Shin, Yong-Chan;Oh, Hyun-Woo;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.429-433
    • /
    • 2010
  • In this study, activated carbon (AC) as a carbon source was modified with different concentrations of cobalt chloride ($CoCl_2$) to prepare a Co-AC composite, and it was used for the preparation of Co-AC/$TiO_2$ composites with titanium oxysulfate (TOS) as the titanium precursor. The physicochemical properties of the prepared Co-AC/$TiO_2$ composites were characterized by $N_2$ adsorption at 77 K, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analysis. The photocatalytic treatments of organic dyes were examined under an irradiation of visible light with different irradiation times. $N_2$ adsorption data showed that the composites had decreased surface area compared with the pristine AC, which was $389\;m^2/g$. From the XRD results, the Co-AC/$TiO_2$ composites contained a mixturephase structuresof anatase and rutile, but a cobalt oxide phase was not detected in the XRD pattern. The EDX results of the Co-AC/$TiO_2$ composites confirmed the presence of various elements, namely, C, O, Ti, and Co. Subsequently, the decomposition of methylene orange (MO, $C_{14}H_{14}N_3NaO_3S$) and rhodamine B (Rh.B, $C_{28}H_{31}ClN_2O_3$) in an aqueous solution, respectively, showed the combined effects of an adsorption effect by AC and the photo degradation effect by $TiO_2$. Especially, the Co particles in the Co-AC/$TiO_2$ composites could enhance the photo degradation behaviors of $TiO_2$ under visible light.

Fruits Extracts Mediated Synthesis of Zinc Oxide Nanoparticles Using Rubus coreanus and its Catalytic Activity for Degradation of Industrial Dye

  • Rupa, Esrat Jahan;Gokulanathan, Anandapadmanaban;Ahn, Jong-Chan;Mathiyalagan, Ramya;Markus, Josua;Elizabeth, Jimenez Perez Zuly;Soshnikova, Veronika;Kim, Yeon-Ju;Yang, Deok-Chun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.93-93
    • /
    • 2018
  • This study disclosed the aqueous fruits extract of Rubus coreanus as a sustainable agent for the synthesis of Rubus coreanus zinc oxide nanoparticle (Rc-ZnO Nps) using as a reducing and capping precursor for co-precipitation method. The development of Rc-ZnO was assured by white precipitated powder and analyzed by spectroscopic and analytical instruments. The UV-visible (UV-Vis) studies indicate the maximum absorbance at 357nm which confirmed the formation of ZnO Nps and the purity, functional group and monodispersity were assured by field emission transmission electron microscopy (FE-TEM), Fourier Transform Infrared (FTIR) Spectroscopy and dynamic light scattering (DLS). The X-ray powder diffraction (XRD) data revealed the Nps is 23.16 nm in size, crystalline in nature and possess hexagonal wurtzite structure. The Rc-ZnO Nps were subjected for catalytic studies. The Malachite Green dye was degraded by Rc- ZnO NPs in both dark and light (100 W tungsten) conditions and it degraded about 90% at 4 hours observation in both cases. The biodegradable, low cost Rc-ZnO NPs can be a better weapon for waste water treatment.

  • PDF

Kinetics and Isotherm Analysis of Valuable Metal Ion Adsorption by Zeolite Synthesized from Coal Fly Ash (석탄비산재로부터 합성한 제올라이트를 이용한 유가금속이온의 흡착속도 및 등온 해석)

  • Ahn, Kab-Hwan;Lee, Chang-Han;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.27 no.2
    • /
    • pp.83-90
    • /
    • 2018
  • In this study, zeolite (Z-C2) was synthesized using a fusion/hydrothermal method on coal fly ash (FA) discharged from a thermal power plant in the Ulsan area and then analyzed via scanning electron microscopy (SEM) and X-ray diffraction (XRD). The Z-C2 was characterized in terms of mineralogical composition and morphological analysis. The XRD results showed that its peaks had the characteristics of Na-A zeolite in the range of $2{\theta}$ of 7.18~34.18. The SEM images confirmed that the Na-A zeolite crystals had a chamfered-edge crystal structure almost identical to that of the commercial zeolite. The adsorption kinetics of Cu, Co, Mn and Zn ions by Z-C2 were described better by the pseudo-second-order kinetic model more than by the pseudo-first-order kinetic model. The Langmuir model fitted the adsorption isotherm data better than the Freundlich model did. The maximum adsorption capacities of Cu, Co, Mn and Zn ions obtained from the Langmuir model were in the following order : Cu (94.7 mg/g) > Co (77.7 mg/g) > Mn (57.6 mg/g) > Zn (51.1 mg/g). These adsorption capacities are regarded as excellent compared to those of commercial zeolite.

Characterization of Fe-ACF/$TiO_2$ composite Photocatalysts Effect Via Degradation of MB Solution (Fe-ACF/$TiO_2$ 복합체의 특성과 MB용액의 분해에서 포토-펜톤 효과)

  • Zhang, Kan;Meng, Ze-Da;Ko, Weon-Bae;Oh, Won-Chun
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.290-298
    • /
    • 2009
  • In this paper, the Fe-activated carbon fiber (ACF)/$TiO_2$ composite catalysts were prepared by a sol-gel method. The synthesized photocatalysts were used for the photo degradation of Methylene blue solution under UV light. From Brunauer-Emmett-Teller measurements (BET) data, it was shown the blocking of the micropores on the surface of ACF by treatment of Fe and Ti compound. As shown in SEM images, the ferric compounds and titanium dioxides were fixed onto the ACF surfaces. The result of X-ray powder diffraction showed that the crystal phase contained a mixing anatase and rutile structure and the 'FeO+$TiO_2$' from the composites. The EDX spectra for the elemental analysis showed the presence of C, O, and Ti with Fe peaks. Degradation activity of MB could be attributed to +OH radicals derived from electron/hole pair's reactions due to photolysis of $TiO_2$ and photo-Fenton effect of Fe.

Motukoreaite and Quintinite-3T from Sinyangri Formation, Jeju Island, Korea (제주도 신양리층에서 산출하는 Motukoreaite와 Quintinite)

  • Jeong, Gi-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.307-312
    • /
    • 2009
  • Motukoreaite and quintinite-3T, Mg-Al layered double hydroxides, were found in the Sinyangri Formation of Jeju Island. They fill the pores of basaltic volcaniclastic sediments in globular and botryoidal aggregates of fine platy particles. Globular aggregates of quintinite-3T were crusted with the parallel overgrowth of motukoreaite plates. X-ray diffraction data and chemical composition are consistent with those reported in literature, while the Mg/Al ratio of motukoreaite is higher. Structural formula of motukoreaite and quintinite-3T derived from electron microprobe analysis are $Na_{1.6}Ca_{0.1}Mg_{40.7}Al_{20.7}Si_{0.9}(CO_3)_{13.6}(SO_4)_{7.4}(OH)_{108}56H_2O$, and $Mg_{3.7}Al_{1.9}Si_{0.2}(OH)_{12}(CO_3)_{0.8}(SO_4)_{0.2}3H_2O$, respectively. Motukoreaite and quintinite-3T were formed by reaction between seawater and basaltic glass, and contributed to the cementation and lithification of the volcaniclastic sediments.

A Study of the Structure and Luminescence Properly of BaMgAl10O17:Eu2+ Blue Phosphor using Scattering Method (Scattering법을 이용한 BaMgAl10O17:Eu2+ 청색형광체의 구조와 발광특성 연구)

  • 김광복;김용일;구경완;천희곤;조동율
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.1
    • /
    • pp.67-74
    • /
    • 2002
  • A phosphor for Plasma Display Panel, BaMgAl$_{10}$ O$_{17}$ :Eu$^{2+}$, showing a blue emission band at about 450nm was prepared by a solid-state reaction using BaCO$_3$, $Al_2$O$_3$, MgO, Eu$_2$O$_3$ as starting materials wish flux AlF$_3$. The study of the behaviour of Eu in BAM phosphor was carried out by the photoluminescence spectra and the Rietveld method with X-ray and neutron powder diffraction data to refine the structural parameters such as lattice constants, the valence state of Eu, the preferential site of Mg atom and the site fraction of each atom. The phenomenon of the concentration quenching was abound 2.25~2.3wt% of Eu due to a decrease in the critical distance for energy transfer of inter-atomic Eu. Through the combined Rietveld refinement, R-factor, R$_{wp}$, was 8.11%, and the occupancy of Eu and Mg was 0.0882 and 0.526 at critical concentration. The critical distance of Eu$^{2+}$ in BAM was 18.8$\AA$ at 2.25% Eu of the concentration quenching. Furthermore, c/a ratio was decreased to 3.0wt% and no more change was observed over that concentration. The maximum entropy electron density was found that the modeling of $\beta$-alumina structure in BaMgAl$_{10}$ O$_{17}$ :Eu$^{2+}$correct coincided showing Ba, Eu, O atoms of z= 1/4 mirror plane.e.ane.e.

Effect of Tungsten on PtRuW/C Catalysts for Promoting Methanol Electro-oxidation (메탄올 전기산화반응 증진을 위한 PtRuW/C 촉매에서 텅스텐의 효과에 관한 연구)

  • Noh, Chang Soo;Sohn, Jung Min;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.561-566
    • /
    • 2012
  • PtRuW/C catalysts were prepared with the different molar ratios of Pt : Ru : W and their compositions were analyzed by energy dispersive X-ray (EDX). The uniform distribution of particles was observed using transmission electron microscopy (TEM). An average crystalline size of 3.5~5.5 nm was calculated based on x-ray diffraction (XRD) data. The electrochemical properties such as electrochemically active surface areas, current densities, specific activities and poisoning rates, were analyzed via CO stripping, linear sweep voltammetry and chronoamperometry. From the analysis, we observed that ternary alloy catalysts, except $PtRu_2W_2/C$, have higher current densities, specific activities and stabilities than those of commercial binary catalysts. Among all in-house catalysts, Pt5Ru4W/C showed the highest specific activity of $121.05mA{\cdot}m^{-2}$ and the lowest poisoning rate of $0.01%{\cdot}s^{-1}$.

Effect of Single and Dual Doping of Rare Earth Metal Ce and Nd Elements on Electrochemical Properties of LiNi0.83 Co0.11Mn0.06O2Cathode Lithium-ion Battery Material (리튬이온전지용 양극활물질 LiNi0.83 Co0.11Mn0.06O2의 전기화학적 특성에 미치는 Ce와 Nd 희토류 금속의 단독 혹은 이중 도핑효과)

  • Kim, Yoo-Young;Ha, Jong-Keun;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.49-57
    • /
    • 2019
  • Layered $LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2$ cathode materials single- and dual-doped by the rare-earth elements Ce and Nd are successfully fabricated by using a coprecipitation-assisted solid-phase method. For comparison purposes, non-doping pristine $LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2$ cathode material is also prepared using the same method. The crystal structure, morphology, and electrochemical performances are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) mapping, and electrochemical techniques. The XRD data demonstrates that all prepared samples maintain a typical ${\alpha}-NaFeO_2$-layered structure with the R-3m space group, and that the doped samples with Ce and/or Nd have lower cation mixing than that of pristine samples without doping. The results of SEM and EDS show that doped elements are uniformly distributed in all samples. The electrochemical performances of all doped samples are better than those of pristine samples without doping. In addition, the Ce/Nd dual-doped cathode material shows the best cycling performance and the least capacity loss. At a 10 C-rate, the electrodes of Ce/Nd dual-doped cathode material exhibit good capacity retention of 72.7, 58.5, and 45.2% after 100, 200, and 300 cycles, respectively, compared to those of pristine samples without doping (24.4, 11.1, and 8.0%).