• Title/Summary/Keyword: Electron concentration

Search Result 2,173, Processing Time 0.033 seconds

Effect of Low-Energy Electron Irradiation on DNA Damage by Cu2+ Ion

  • Noh, Hyung-Ah;Park, Yeunsoo;Cho, Hyuck
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.1
    • /
    • pp.63-68
    • /
    • 2017
  • Background: The combined effect of the low energy electron (LEE) irradiation and $Cu^{2+}$ ion on DNA damage was investigated. Materials and Methods: Lyophilized pBR322 plasmid DNA films with various concentrations (1-15 mM) of $Cu^{2+}$ ion were independently irradiated by monochromatic LEEs with 5 eV. The types of DNA damage, single strand break (SSB) and double strand break (DSB), were separated and quantified by gel electrophoresis. Results and Discussion: Without electron irradiation, DNA damage was slightly increased with increasing Cu ion concentration via Fenton reaction. LEE-induced DNA damage, with no Cu ion, was only 6.6% via dissociative electron attachment (DEA) process. However, DNA damage was significantly increased through the combined effect of LEE-irradiation and Cu ion, except around 9 mM Cu ion. The possible pathways of DNA damage for each of these different cases were suggested. Conclusion: The combined effect of LEE-irradiation and Cu ion is likely to cause increasing dissociation after elevated transient negative ion state, resulting in the enhanced DNA damage. For the decrease of DNA damage at around 9-mM Cu ion, it is assumed to be related to the structural stabilization due to DNA inter- and intra-crosslinks via Cu ion.

THE INFLUENCE OF pH AND LACTIC ACID CONCENTRATION ON THE FORMATION OF ARTIFICIAL ROOT CARIES IN ACID BUFFER SOLUTION (산 완충용액의 pH 및 유산의 농도가 인공치근우식의 형성에 미치는 영향)

  • Oh, Hyun-Suk;Roh, Byoung-Duck;Lee, Chan-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.1
    • /
    • pp.47-60
    • /
    • 2007
  • The purpose of this study is to compare and to evaluate the effect of pH and lactic acid concentration on the progression of artificial root caries lesion using polarizing microscope, and to evaluate the morphological changes of hydroxyapatite crystals of the demineralized area and to investigate the process of demineralization using scanning electron microscope. Artificial root caries lesion was created by dividing specimens into 3 pH groups (pH 4.3, 5.0, 5.5), and each pH group was divided into 3 lactic acid concentration groups (25 mM, 50 mM, 100 mM). Each group was immersed in acid buffer solution for 5 days and examined. The results were as follows : 1. Under polarized microscope, the depth of lesion was more effected by the lactic acid concentration rather than the pH. 2. Under scanning electron microscope, dissolution of hydroxyapatite crystals were increased as the lactic acid concentration increased and the pH decreased. 3. Demineralized hydroxyapatite crystals showed peripheral dissolution and decreased size and number within cluster of hydroxyapatite crystals and widening of intercluster and intercrystal spaces as the pH decreased and the lactic acid concentration increased. 4. Under scanning electron microscope evaluation of the surface zone, clusters of hydroxyapatite crystals were dissolved, and dissolution and reattachment of crystals on the surface of collagen fibrils were observed as the lactic acid concentration increased. 5. Under scanning electron microscope, demineralizatlon of dentin occurred not only independently but also with remineralization simultaneously. In conclusion, the study showed that pH and lactic acid concentration influenced the rate of progression of the lesion in artificial root caries. Demineralization process was progressed from the surface of the cluster of hydroxyapatite crystals and the morphology of hydroxyapatite crystals changed from round or elliptical shape into irregular shape as time elapsed.

Studies on the Electrochemical Properties of Indigo Dye (인디고 염료의 전기화학적 특성 연구)

  • Lee Song Ju;Jang Hong Gi;Heo Buk Gu;Park Dong Won
    • Textile Coloration and Finishing
    • /
    • v.17 no.4 s.83
    • /
    • pp.1-6
    • /
    • 2005
  • We studied the degree of variety of indigo for the electrochemical redox reaction in addition of reducing agent and the electrokinetic parameters. The electrokinetic parameters such asthe number of electron and the exchange rate constant were obtained by cyclic voltammetry. With increasing scan rate, the reduction currents of indigo were increased and the reduction potentials were shifted to the negative direction. As the results, the reduction processes of the indigo were proceeding to totally irreversible and diffusion controlled reaction. Also, exchange rate constant ($k^0$) and diffusion coefficient ($D_0$) of indigo were decreased by increasing concentration of reducing agent. We found that the less concentration, the more easily diffused and electron transferred and the product was more stable.

Characterization of Channel Electric Field in LDD MOSFET (LDD MOSFET 채널 전계의 특성해석)

  • Park, Min-Hyoung;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.363-367
    • /
    • 1988
  • A simple analytical model for the lateral channel electric field in gate - offset structured Lightly Doped Drain MOSFET has been developed. The model's results agree well with two dimensional device simulations. Due to its simplicity, our model gives a better understanding of the mechanisms involved in reducing the electric field in the LDD MOSFET. The model shows clearly the dependencies of the lateral channel electric field as function of drain and gate bias conditions and process, design parameters. Advantages of analytical model over costly 2-D device simulations is to identify the effects of various parameters, such as oxide thickness, junction depth, gate / drain bias, the length and doping concentration of the lightly doped region, on the peak electric field that causes hot - electron phenomena, individually. We are able to find the optimum doping concentration of LDD minimizing the peak electric field and hot - electron effects.

  • PDF

Calculation of Electron Density and Electronic States in n-AlGaAs/GaAs Heterointerface (수치해석법에 의한 n-AlGaAs/GaAs 이종접합에서의 전자밀도와 전자 상태 계산)

  • Kho, Jae-Hong;Kim, Choong-won;Park, Seong-Ho;Han, Baik-Hyung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.10
    • /
    • pp.1202-1208
    • /
    • 1988
  • The electron density and electronic states in n- AlGaAs/GaAs heterointerface are calculated by using classical- and quantum-mechanics, respectively. We examine the effects of spacer layer thickness and doping concentration in AlGaAs layer on 2DEG density. Also, the dependences of electronic states of 2DEG upon temperature and acceptor concentration in GaAs layer are investigated.

  • PDF

Oxidation of Carbon Monoxide by Pseudomonas carboxydohydrogena (Pseudomonas carboxydohydrogena에 의한 일산화탄소의 산화)

  • ;Hegeman, George
    • Korean Journal of Microbiology
    • /
    • v.21 no.1
    • /
    • pp.27-35
    • /
    • 1983
  • The stoichiometry between the consumption of CO and $O_2$ and the production of $CO_2(2CO+O_2{\rightarrow}2CO_2)$) showed that Pseudomonas carboxydohydrogena grows as a typical aerobic CO oxidizer with CO. The optimal concentration of CO for growth was found to be 30% in gas mixture with air. The initial buffer concentration of the culture medium did not affect the growth of this bacterium. P. carboxydohydrogena is an obligate aerobe and dose not use nitrate as a terminal electron acceptor. The CO dehydrogenase is an inducible and soluble enzyme. The reaction rate and stability were maximal at pH7.5, and the Arrhenius plot revealed an activation energy of 37.7kJ/mol (9.0 Kcal/mol). The crude enzyme used methylene blue, thionin, and toluylene blue as electron acceptors for the oxidation of CO to $Co_2$ under anaerobic conditions. It was found that water must be the source of the second oxygen atom for CO oxidation.

  • PDF

Effect of Transition Metal on the Thermal Stability and Mechanical Property of Fe-based Amorphous Alloys (Fe기 비정질합금의 열적안정성 및 기계적 성질에 미치는 천이금속의 영향)

  • Gook, Jin Seon;Yoon, Dong Joo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.6
    • /
    • pp.345-349
    • /
    • 2001
  • This study has investigated the effect of thermal stability and mechanical property of $Fe_{80-X}P_{10}C_6B_4M_X$(X=2, 4, 6, M=transition metal) amorphous alloys fabricated by the melt-spun process. The glass transition temperature($T_g$), crystallization temperature($T_x$) and hardness increase with decreasing electron concentration (e/a) from about 7.38 to 7.18. The decrease of e/a implies the increase in the attractive bonding state between the M elements and other constituent element. The decrease in a/e leads to the enhancement of the attractive bonding state among the constituent elements which is favorable for the increase in $T_g$, $T_x$ and hardness.

  • PDF

Fabrication of Polymer Nanofibers using Electrospinning (전기방사를 이용한 PEO 나노섬유 제조)

  • Kim, G.T.;Ahn, Y.C.;Lee, J.K.;Kattamuri, Nirupama;Sung, C.M.
    • Journal of ILASS-Korea
    • /
    • v.8 no.2
    • /
    • pp.31-37
    • /
    • 2003
  • Polymeric fibers with nanometer-scale diameters are produced by electrospinning method. When the electrical forces at the surface of a polymer solution or melt overcome the surface tension, then electrospinning occurs and nanofibers are made. Polyethylene oxide(PEO) have been electrospun in our laboratory Electrospun PEO fibers are observed by scanning electron microscopy or transmission electron microscopy In thl:; study. the average diameter of the electrospun fibers decreases with decreasing PEO concentration and increasing electric field strength. The optimal conditions for producing uniform PEO 100nm fibers are the 10wt% PEO concentration at a voltage 25 to 30kV and a distance of 10cm from tip to collector.

  • PDF

Physiological Activity of Zizyphus jujuba Leaf Extracts (대추잎 추출물의 생리활성 작용)

  • Jin, Qing;Park, Jyung-Rewng;Kim, Jong-Bae;Cha, Myung-Hwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.3
    • /
    • pp.593-598
    • /
    • 1999
  • This study was designed to investigate the possible utilization of Zizyphus jujuba leaves as a source of functional ingredients. The physiological activity of different solvent fractions prepared from ethanol extract of Zizyphus jujuba leaves were analyzed. Xanthine oxidase inhibitory effect was very high in all fractions except chloroform fraction. The very high electron donating ability was observed in the ethylacetate fraction and the effect was similar to 0.1% tocopherol. Nitrite scavenging effect of all fractions was more than 40% even at low concentration of 1mg/ml and was increased with increasing concentration. Angiotensin I converting enzyme inhibitory activity was appeared in ethyl acetate and chloroform fractions only at high concentraton.

  • PDF

Characterization of Channel Electric Field in LDD MOSFET (LDD MOSFET채널 전계의 특성 해석)

  • 한민구;박민형
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.6
    • /
    • pp.401-415
    • /
    • 1989
  • A simple but accurate analytical model for the lateral channel electric field in gate-offset structured Lightly Doped Drain MOSFET has been developed. Our model assumes Gaussian doping profile, rather than simple uniform doping, for the lightly doped region and our model can be applied to LDD structures where the junction depth of LDD is not identical to the heavily doped drain. The validity of our model has been proved by comparing our analytical results with two dimensional device simulations. Due to its simplicity, our model gives a better understanding of the mechanisms involved in reducing the electric field in the LDD MOSFET. The model shows clearly the dependencies of the lateral channel electric field on the drain and gate bias conditions and process, design parameters. Advantages of our analytical model over costly 2-D device simulations is to identify the effects of various parameters, such as oxide thickness, junction depth, gate/drain bias, the length and doping concentration of the lightly doped region, on the peak electric field that causes hot-electron pohenomena, individually. Our model can also find the optimum doping concentration of LDD which minimizes the peak electric field and hot-electron effects.

  • PDF