• Title/Summary/Keyword: Electron concentration

Search Result 2,181, Processing Time 0.04 seconds

RETINOL STABILIZATION BY PSEUDO-LIPOSOME AND LAMELLAR LIQUID CRYSTAL

  • Lee, Seung-Ji;Jo, Byoung-Kee;Lee, Young-Jin;Ryu, Chang-Suk;Kim, Beom-Jun;Suk, Chang-Hyun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.24 no.3
    • /
    • pp.116-122
    • /
    • 1998
  • It is well known that all-trans-retinol is not only very unstable in heat, light, air, and water, but also skin-irritant despite a good anti-wrinkle effect. Therefore, it is very difficult to stabilize retinol and make the safe retinol containing cosmetics by using a certain concentration of retinol with real effect. In order to dissolve these problems and apply retinol for skin care cream, firstly retinol is to be encapsulated in the vesicle called Liposphere (pseudo-liposome) which is made by homogenizing under high pressure the mixtures of lecithin, retinol, caprylic/capric triglyceride, and hydroalcoholic solution ; and then this retinol containing Liposphere is to be intercalated in lamellar liquid crystal layer which is prepared by emulsifying in an optimal ratio the mixtures composed of non-ionic emulsifier (cetearyl glucoside, sorbitan stearate & sucrose cocoate etc), cetearyl alcohol, stearic acid, cholesterol, and ceramide. In addition, the stability of the retinol containing oil in water cream by adding the polymeric emulsifier such as acrylate /C10-30 alkyl alkylate crosspolymer is to be ensured even at 55 C. Retinol containing oil in water cream prepared through above procedure could be very stable at 45 C for at least 50 days. The structure identification of lamellar liquid crystal was determined using polarized light microscope and electron microscope Conclusively, we could make the very stable retinol containing oil in water cream by triple procedure, that is, encapsulation of retinol in Liposphere, intercalation of retinol in lamellar liquid crystal layer, and assurance of the high temperature stability of cream even at 55 C.

  • PDF

The Study on Compounds of the Fermented Sipjundaebo-tang and its Neuroprotective Activity (십전대보탕 발효물의 성분 분석 및 뇌신경 세포 보호 활성)

  • Yang, Hye-Jin;Weon, Jin-Bae;Ma, Jin-Yeul;Ma, Choong-Je
    • YAKHAK HOEJI
    • /
    • v.55 no.2
    • /
    • pp.121-126
    • /
    • 2011
  • Sipjundaebo-tang was a well-known restorative traditional herbal prescription that used to treat anemia, anorexia, fatigue and inflammation. In this study, we examined the bioconversion of compounds in the Sipjundaebo-tang (SJ) and fermented Sipjundaebo-tang with Lactobacillus fermentum KFRI 164 (FSJ) using established HPLC-DAD method. The chromatogram of FSJ has shown that the contents of six bioactive compounds 5-HMF, paeoniflorin, ferulic acid, cinnam aldehyde, decursin, glycyrrhizin in SJ has decreased. And the contents of unknown compounds (1), (2), (3), (4) and (5) in FSJ were higher than each contents of SJ. The antioxidant activities of SJ and FSJ were conducted by DPPH free radical and Hydrogen peroxide ($H_2O_2$) scavenging assay. Electron donating activity (EDA, %) value of FSJ has shown higher than 21.9% and 14.5% at a concentration of 0.5 mg/ml for DPPH radical scavenging activity and $H_2O_2$ scavenging activity, respectively. Also, the neuroprotective activities of SJ and FSJ against glutamate-induced oxidative stress in a mouse hippocampal cell line (HT22) were evaluated by MTT assay. As a result, FSJ has shown higher neuroprotective activity than 56.5% comparing with SJ. In conclusion, the fermented SJ using microorganism could convert compounds in SJ and enhance antioxidant activity and neuroprotective activity.

Effect of Lead Concentration on Surface Oxide Formed on Alloy 600 in High Temperature and High Pressure Alkaline Solutions (고온, 고압 알칼리 수용액에서의 Alloy 600 산화막 특성에 미치는 납 농도 영향)

  • Kim, Dong-Jin;Kim, Hyun Wook;Moon, Byung Hak;Kim, Hong Pyo;Hwang, Seong Sik
    • Corrosion Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.96-102
    • /
    • 2012
  • Outer diameter stress corrosion cracking (ODSCC) has occurred for Alloy 600 (Ni 75 wt%, Cr 15 wt%, Fe 10 wt%) as a heat exchanger tube of the steam generator (SG) in nuclear power plants (NPP) during long term operation. Among many causes for SCC, lead (Pb) is known to be one of the most deleterious species in the secondary system. In the present work, the oxide formed on Alloy 600 was characterized as a function of the PbO content in 0.1 M NaOH at $315^{\circ}C$ by using an electrochemical impedance spectroscopy (EIS), a transmission electron microscopy (TEM), equipped with an energy dispersive x-ray spectroscopy (EDS). The oxide property was analyzed in view of SCC susceptibility.

Canola oil is an excellent vehicle for eliminating pesticide residues in aqueous ginseng extract

  • Cha, Kyu-Min;Lee, Eun-Sil;Kim, Il-Woung;Cho, Hyun-Ki;Ryu, Ji-Hoon;Kim, Si-Kwan
    • Journal of Ginseng Research
    • /
    • v.40 no.3
    • /
    • pp.292-299
    • /
    • 2016
  • Background: We previously reported that two-phase partition chromatography between ginseng water extract and soybean oil efficiently eliminated pesticide residues. However, an undesirable odor and an unpalatable taste unique to soybean oil were two major disadvantages of the method. This study was carried out to find an alternative vegetable oil that is cost effective, labor effective, and efficient without leaving an undesirable taste and smell. Methods: We employed six vegetable oils that were available at a grocery store. A 1-mL sample of the corresponding oil containing a total of 32 pesticides, representing four categories, was mixed with 10% aqueous ginseng extract (20 mL) and equivalent vegetable oil (7 mL) in Falcon tubes. The final concentration of the pesticides in the mixture (28 mL) was adjusted to approximately 2 ppm. In addition, pesticides for spiking were clustered depending on the analytical equipment (GC/HPLC), detection mode (electron capture detector/nitrogen-phosphorus detector), or retention time used. Samples were harvested and subjected to quantitative analysis of the pesticides. Results: Soybean oil demonstrated the highest efficiency in partitioning pesticide residues in the ginseng extract to the oil phase. However, canola oil gave the best result in an organoleptic test due to the lack of undesirable odor and unpalatable taste. Furthermore, the qualitative and quantitative changes of ginsenosides evaluated by TLC and HPLC, respectively, revealed no notable change before or after canola oil treatment. Conclusion: We suggest that canola oil is an excellent vehicle with respect to its organoleptic property, cost-effectiveness and efficiency of eliminating pesticide residues in ginseng extract.

Kinetic Studies on the Oxidation of Oxalatoaquamolybdenum(IV) Trimer by Hydrogen Chromate Ion (수소크롬산 이온에 의한 옥살라토아쿠아몰리브덴(IV) 삼합체의 산화반응)

  • Chang-Su Kim;Chang-Yong Kwon
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.57-62
    • /
    • 1986
  • Oxidation of $[Mo_3O_4(C_2O_4)_3(H_2O)_3]^{2-}$ with HCr$O_4^-$ yields the molybdenum(Ⅳ) complex, $[Mo_2O_5(C_2O_4)_2(H_2O)_2]^{2-}$. Stoichiometry for the reaction of $[Mo_3O_4(C_2O_4)_3(H_2O)_3]^{2-}$ with HCr$O_4^-$ are expressed as $2Mo_3^{IV} + 4Cr^{VI} {\to} 3Mo_2^{VI} + 4Cr^{III}$. Observed rate constants are dependent on hydrogen ion concentration. The kinetic data are consistent with a mechanism in which three successive single-electron steps convert $Cr^{VI}$to $Cr^{III}$ by way of intermediate $Cr^V$ and $Cr^{IV}$. Detailed mechanisms are presented and discussed.

  • PDF

Direct somatic embryogenesis, plant regeneration and genetic transformation of Panax ginseng

  • Park, Yong-Eui;Yang, Deok-Chun;Park, Kwang-Tae;Soh, Woong-Young;Hiroshi Sano
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.85-89
    • /
    • 1999
  • Somatic embryogendesis is one of good examples of the basic research for plant embryo development as well as an important technique for plant biotechnology. This paper describes the direct somatic embryogenesis from zygotic embryos of Panax ginseng is reversely related to normal axis growth of zygotic embryos by the experiment of various chemical treatments. Under the normal growth condition, the apical tips of embryo axis produced an agar-diffusible substance, which suppressed somatic embryo development from cotyledons. Although the cells of zygotic embryos were released from the restraint of embryo axis, various factors were still involved for somatic embryo development. Electron microscopic observation revealed that the ultrastructure of cells of cotyledon epidermis markedly changed before initiation of embryonic cell division, probably indicating reprogramming events into the cells embryogenically determined state. Polar accumulation of endogenous auxin or cell-cell isolation by plasmolysis pre-treatment is the strong inducer for the somatic embryo development. The cells for the process of somatic embryogenesis might be determined by the physiological conditions fo explants and medium compositions. Direct somatic embryos from cotyledons fo ginseng were originated eithrer from single or multiple cells. The different cellular origin of somatic embryos was originated either from single or multiple cell. The different cellular origin of somatic embryos was depended on various developmental stages of cotyledons. Immature meristematic cotyledons produced multiple cell-derived somatic embryos, which developed into multiple embryos. While fully mature cotyledons produced single cell-derived single embryos with independent state. Plasmolysis pretreatment of cotyledons strongly enhanced single cell-derived somatic embryogenesis. Single embryos were converted into normal plantlets with shoot and roots, while multiple embryos were converted into only multiple shoots. GA3 or a chilling treatment was prerequisite for germination and plant conversion. Low concentration of ammonium ion in medium was necessary for balanced growth of root and shoot of plantlets. Therefore, using above procedures, successful plant regeneration of ginseng was accomplished through direct single embryogenesis, which makes it possible to produce genetically transformed ginseng efficently.

  • PDF

A Solid-Contact Indium(III) Sensor based on a Thiosulfinate Ionophore Derived from Omeprazole

  • Abbas, Mohammad Nooredeen;Amer, Hend Samy
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1153-1159
    • /
    • 2013
  • A novel solid-contact indium(III)-selective sensor based on bis-(1H-benzimidazole-5-methoxy-2-[(4-methoxy-3, 5-dimethyl-1-pyridinyl) 2-methyl]) thiosulfinate, known as an omeprazole dimer (OD) and a neutral ionophore, was constructed, and its performance characteristics were evaluated. The sensor was prepared by applying a membrane cocktail containing the ionophore to a graphite rod pre-coated with polyethylene dioxythiophene (PEDOT) conducting polymer as the ion-to-electron transducer. The membrane contained 3.6% OD, 2.3% oleic acid (OA) and 62% dioctyl phthalate (DOP) as the solvent mediator in PVC and produced a good potentiometric response to indium(III) ions with a Nernstian slope of 19.09 mV/decade. The constructed sensor possessed a linear concentration range from $3{\times}10^{-7}$ to $1{\times}10^{-2}$ M and a lower detection limit (LDL) of $1{\times}10^{-7}$ M indium(III) over a pH range of 4.0-7.0. It also displayed a fast response time and good selectivity for indium(III) over several other ions. The sensor can be used for longer than three months without any considerable divergence in potential. The sensor was utilized for direct and flow injection potentiometric (FIP) determination of indium(III) in alloys. The parameters that control the flow injection method were optimized. Indium(III) was quantitatively recovered, and the results agreed with those obtained using atomic absorption spectrophotometry, as confirmed by the f and t values. The sensor was also utilized as an indicator electrode for the potentiometric titration of fluoride in the presence of chloride, bromide, iodide and thiocyanate ions using indium(III) nitrate as the titrant.

The Specific Case Analysis of Biomineralization Induced by Sulfate Reducing Bacteria

  • Liu, Hongwei;Qin, Shuang;Fu, Chaoyang;Xiao, Fei;Wang, Deli;Han, Xia;Wang, Tianli;Liu, Hongfang
    • Corrosion Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.285-293
    • /
    • 2017
  • The effects of sulfate reducing bacteria (SRB) on the corrosion and scaling of the Q235 carbon steel has been investigated in the simulated sewage water and oil field gathering pipelines production water, using scanning electron microscopy (SEM), energy dispersive x-ray spectrometry (EDS), and three-dimensional stereoscopic microscope. Results indicated that the concentration of SRB reached the maximum value on the ninth day in simulated sewage water with a large amount of scaling on the surface of specimen. In oil field gathering pipelines, a large amount of scaling and mineralization of mineral salts and thick deposition of extracellular polymeric substance (EPS) layers were also observed on the surface of specimen. The thickness of biofilm was about $245{\mu}m$ within 30 days. After adding microbicides, the thickness of corrosion products film was only up to $48-106{\mu}m$ within 30 days, suggesting that SRB could induce biomineralization. Under-deposit corrosion morphology was uniform in the absence of microbicides while local corrosion was observed in the presence of microbicides.

Fabrication of Zn-treated ACF/TiO2 Composites and Their Photocataytic Activity for Degradation of Methylene Blue

  • Go, Yu-Gyoung;Zhang, Feng-Jun;Chen, Ming-Liang;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.19 no.3
    • /
    • pp.142-150
    • /
    • 2009
  • In this paper, non-treated ACF (Activated Carbon Fiber) /$TiO_2$ and Zn-treated ACF/$TiO_2$ were prepared. The prepared composites were characterized in terms of their structural crystallinity, elemental identification and photocatalytic activity. XRD patterns of the composites showed that the non-treated ACF/$TiO_2$ composite contained only typical single and clear anatase forms while the Zn-treated ACF/$TiO_2$ contained a mixed anatase and rutile phase with a unique ZnO peak. SEM results show that the titanium complex particles are uniformly distributed on and around the fiber and that the titanium complex particles are more regularly distributed on and around the ACF surfaces upon an increase of the $ZnCl_2$ concentration. These EDX spectra show the presence of peaks from the C, O and Ti elements. Moreover, peaks of the Zn element were observed in the Zn-treated ACF/$TiO_2$ composites. The prominent photocatalytic activity of the Zn-treated ACF/$TiO_2$ can be attributed to the three different effects of photo-degradation: doping, absorptivity by an electron transfer, and adsorptivity of porous ACFs between the Zn-$TiO_2$ and Zn-ACF.

Electrical and Optical Properties of Solution-Based Sb-Doped SnO2 Transparent Conductive Oxides Using Low-Temperature Process (저온 공정을 이용한 용액 기반 Sb-doped SnO2 투명 전도막의 전기적 및 광학적 특성)

  • Koo, Bon-Ryul;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.3
    • /
    • pp.145-151
    • /
    • 2014
  • Solution-based Sb-doped $SnO_2$ (ATO) transparent conductive oxides using a low-temperature process were fabricated by an electrospray technique followed by spin coating. We demonstrated their structural, chemical, morphological, electrical, and optical properties by means of X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, atomic force microscopy, Hall effect measurement system, and UV-Vis spectrophotometry. In order to investigate optimum electrical and optical properties at low-temperature annealing, we systemically coated two layer, four layer, and six layers of ATO sol-solution using spin-coating on the electrosprayed ATO thin films. The resistivity and optical transmittance of the ATO thin films decreased as the thickness of ATO sol-layer increased. Then, the ATO thin films with two sol-layers exhibited superb figure of merit compared to the other samples. The performance improvement in a low temperature process ($300^{\circ}C$) can be explained by the effect of enhanced carrier concentration due to the improved densification of the ATO thin films causing the optimum sol-layer coating. Therefore, the solution-based ATO thin films prepared at $300^{\circ}C$C exhibited the superb electrical (${\sim}7.25{\times}10^{-3}{\Omega}{\cdot}cm$) and optical transmittance (~83.1 %) performances.