Several investigators have presented the effects of external magnetic fields on the dose distributions for clinical electron and photon beams. We focus the low energy electron beam with more lateral scatter In this study we calculated the beam profiles for an clinical electron beam of 6 MeV with longitudinal magnetic fields of 0.5 T-3.0 T using a Monte Carlo code. The principle of dose enhancements in the penumbra region is to deflect the laterally scattered electrons from its initial direction by the skewness of the laterally scattered electrons along the direction of magnetic field lines due to Lorentz force under longitudinal magnetic field. To discuss the dose enhancement effect on the penumbra area from the calculated results, we introduced the simple term of penumbra reduction ratio (PRR), which is defined as the percentage difference between the penumbra with and without magnetic field at the same depth. We found that the average PRR are 33%, and 49% over the depths of 1.5 cm, 2.0 cm, and 2.4 cm for the magnetic fields of 2.0 T and 3.0 T respectively. For the case of 0.5 T and 1.0 T the effects of magnetic filed were not observed significantly. In order to obtain the dose enhancement effects by the external magnetic field, we think that its strength should be more than 2 T approximately. We expect that the PRR would be saturated to 50-60% with magnetic fields of 3 T-5 T As a result of these calculations we found that the penumbra widths can be reduced with increased magnetic fields. This Penumbra reduction is explained as a result of electron lateral spread outside the geometrical edges of the beam in a longitudinal magnetic field. This means that the electron therapy benefits from the external magnetic fields.
Je, Jae-Yong;Noh, Kyung-Suk;Shin, Oon-Jae;Park, Cheol-Woo
The Journal of Korean Society for Radiation Therapy
/
v.20
no.2
/
pp.103-107
/
2008
Purpose: This paper describes a electron field presence of magnetic field, intensity and shape surface dose variation to clinical application possibility. Materials and Methods: The using 6 MeV electron and $10{\times}10\;cm^2$ field size, 9 hole to shielding block make the by measure the film, when the magnetic field position inside and outside of the X-Omat film and parallel plate ionization chamber using the surface dose measured. Results: Present of 4 cm to the side at angle about 3 degree from beam center, use of ring type magnetic is 0.9% increase the surface dose, lens block located in the magnetic field the surface dose 1.58% increase, half magnetic field's position on the side of them at the field center of the 3.6% increase of the surface dose. Conclusion: Surface dose variation is with magnetic field about the mean electron beam of progress direction change, orbit region patient's is inconvenient without surface dose increase percentage case goodness will be used as a useful way.
In order to improve and supplement the shielding method for electron beam treatment, we designed a patient-specific shielding method using a 3D printer, and evaluated the usefulness by comparing and analyzing the distribution of electron beam doses to adjacent organs. In order to treat 5 cm sized superficial tumors around the lens, a CT Simulator was used to scan the Alderson Rando phantom and the DICOM file was converted into an STL file. The converted STL file was used to design a patient-specific shield and mold that matched the body surface contour of the treatment site. The thickness of the shield was 1 cm and 1.5 cm, and the mold was printed using a 3D printer, and the patient customized shielding block (PCSB) was fabricated with a cerrobend alloy with a thickness of 1 cm and 1.5 cm. The dosimetry was performed by attaching an EBT3 film on the surface of the Alderson Rando phantom eyelid and measuring the dose of 6, 9, and 12 MeV electron beams on the film using four shielding methods. Shielding rates were 83.89%, 87.14%, 87.39% at 6, 9, and 12 MeV without shielding, 1 cm (92.04%, 87.48%, 86.49%), 1.5 cm (91.13%, 91.88% with PSCB), 92.66%) The shielding rate was measured as 1 cm (90.7%, 92.23%, 88.08%) and 1.5 cm (88.31%, 90.66%, 91.81%) when the shielding block and the patient-specific shield were used together. PCSB fabrication improves shielding efficiency over conventional shielding methods. Therefore, PSCB may be useful for clinical application.
Sin, Dong-Ho;Sin, Dong-Oh;Kim, Sung-Hoon;Park, Sung-Yong;Ji, Young-Hoon;Ahn, Hee-Kyung;Kang, Jin-Oh;Hong, Seong-Eon
Proceedings of the Korean Society of Medical Physics Conference
/
2004.11a
/
pp.166-169
/
2004
In the International Code of Practice for dosimetry TRS-398 published by International Atomic Energy Agency(IAEA), water equivalency plastic phantom may be used under certain circumstances for electron beam dosimetry for beam quality E0${\leq}$ 10 MeV. In this study, Palstic Water$^{TM}$ and Virtual Water$^{TM}$ were evaluated in order to determine fluence scaling factor hpl. Plastic phantom was evaluated for five electron energy from 6 MeV to 20 MeV. From the measured data of Palstic Water$^{TM}$, the fluence scaling factor hpl was found to be average 0.9964 and Virtual Water$^{TM}$ fluence scaling factor was 1.0156.
Lee, Sang Hyeon;Ahn, Woo Sang;Lee, Woo Seok;Choi, Jin Hyeok;Kim, Seon Yeon
The Journal of Korean Society for Radiation Therapy
/
v.29
no.2
/
pp.65-73
/
2017
Purpose: Machine Performance Check (MPC) is a self-checking software based on the Electronic Portal Imaging Device (EPID) to measure daily beam outputs without external installation. The purpose of this study is to verify the usefulness of MPC by comparing and correlating daily beam output of QA Beamchecker PLUS. Materials and Methods: Linear accelerator (Truebeam 2.5) was used to measure 10 energies which are composed of photon beams(6, 10, 15 MV and 6, 10 MV-FFF) and electron beams(6, 9, 12, 16 and 20 MeV). A total of 80 cycles of data was obtained by measuring beam output measurement before treatment over five months period. The Pearson correlation coefficient was used to evaluate the consistency of the beam output between the MPC and the QA Beamchecker PLUS. In this study, if the Pearson correlation coefficient is; (1) 0.8 or higher, the correlation is very strong (2) between 0.6 and 0.79, the correlation is strong (3) between 0.4 and 0.59, the correlation is moderate (4) between 0.2 and 0.39, the correlation is weak (5) lower than 0.2, the correlation is very weak. Results: Output variations observed between MPC and QA Beamchecker PLUS were within 2 % for photons and electrons. The beam outputs variations of MPC were $0.29{\pm}0.26%$ and $0.30{\pm}0.26%$ for photon and electron beams, respectively. QA Beamchecker PLUS beam outputs were $0.31{\pm}0.24%$ and $0.33{\pm}0.24%$ for photon and electron beams, respectively. The Pearson correlation coefficient between MPC and QA Beamchecker PLUS indicated that photon beams were very strong at 15 MV, and strong at 6 MV, 10 MV, 6 MV-FFF and 10 MV-FFF. For electron beams, the Pearson correlation coefficient were strong at 16 MeV and 20 MeV, moderate at 9 MeV and 12 MeV, and very weak at 6 MeV. Conclusion: MPC showed significantly strong correlation with QA Beamchecker PLUS when testing with photon beams and high-energy electron beams in the evaluation of daily beam output, but the correlation when testing with low-energy electron beams (6 MeV) appeared to be low. However, MPC and QA Beamchecker PLUS are considered to be suitable for checking daily beam output, as they performed within 2 % of beam output consistency during the observation. MPC which can perform faster than the conventional daily beam output measurement tool, is considered to be an effective method for users.
There is a definite requirement to continuously monitor the operating characteristics of radiation therapy machines. It is advisable to monitor the symmetry, flatness, and energy stability of x-ray beams. The semiconductor system was developed using commercially available rectifier diode for th assessment of quality assurance In radiation therapy, which is capable of the above measurements. The beam characteristics of 6MV, 10MV and 21MV photon of Microtron electron accelerator were measured using seven-diodes as detectors and the results were compared with that of using a film results dosimetry with a X-Y plotter. The seven-diode detetor is versatile enough to be used for checking beam profile, flatness, symmetry and energy.
The Journal of Korean Society for Radiation Therapy
/
v.4
no.1
/
pp.47-52
/
1990
The MM-22 medical microtron at Korea Cancer Center Hospital has been running for radiotherapy since it was installed in 1986. The microtron is a very flexible radiation therapy device with excellent radiation field for photon or electron therapy. The microtron accelerates elections from an energy of minimun 5.3MeV to an energy of maximum 22.5MeV. The electrons are led from the microtron to the treatment head via a beam transport system and are used for radiotherapy. Present paper describes the system structures and operating characteristics of the MM-22 microtron and its therapy unit.
Proceedings of the Korean Society of Medical Physics Conference
/
2002.09a
/
pp.94-96
/
2002
In order to achieve the radiotherapy more precisely using highly energetic heavy charged particles, it is important to know the distribution of the electron density in a human body, which is highly related to the range of charged particles. We can directly obtain the 2-D distribution of the electron density in a sample from a heavy ion CT image. For this purpose, we have developed a heavy ion CT system using a broad beam. The performance, especially the position resolution, of this system is estimated in this work. All experiments were carried out using the heavy ion beam from the HIMAC. We have obtained the projection data of polyethylene samples with various sizes using He 150 MeV/u, C 290 MeV/u and Ne 400 MeV/u beams. The used targets are the cylinders of 40, 60 and 80 mm in diameter, each of them has a hole of 10 mm in diameter at the center of it. The dependence of the spatial resolution on the target size and the kinds of beams will be discussed.
Ahn, Beom Seok;Wu, Hong-Gyun;Yoo, Sook Hyun;Park, Jong Min
Journal of Radiation Protection and Research
/
v.40
no.1
/
pp.17-24
/
2015
To improve accuracy of dose calculation on kilovoltage cone beam computed tomography (kV CBCT) images, a custom-made phantom was fabricated to acquire an accurate CT number to electron density curve by full scatter of cone beam x-ray. To evaluate the dosimetric accuracy, 9 volumetric modulated arc therapy (VMAT) plans for head and neck (HN) cancer and 9 VMAT plans for lung cancer were generated with an anthropomorphic phantom. Both CT and CBCT images of the anthropomorphic phantom were acquired and dose-volumetric parameters on the CT images with CT density curve (CTCT), CBCT images with CT density curve ($CBCT_{CT}$) and CBCT images with CBCT density curve ($CBCT_{CBCT}$) were calculated for each VMAT plan. The differences between $CT_{CT}$ vs. $CBCT_{CT}$ were similar to those between $CT_{CT}$ vs. $CBCT_{CBCT}$ for HN VMAT plans. However, the differences between $CT_{CT}$ vs. $CBCT_{CT}$ were larger than those between $CT_{CT}$ vs. $CBCT_{CBCT}$ for lung VMAT plans. Especially, the differences in $D_{98%}$ and $D_{95%}$ of lung target volume were statistically significant (4.7% vs. 0.8% with p = 0.033 for $D_{98%}$ and 4.8% vs. 0.5% with p = 0.030 for $D_{95%}$). In order to calculate dose distributions accurately on the CBCT images, CBCT density curve generated with full scatter condition should be used especially for dose calculations in the region of large inhomogeneity.
Cho Hyun Sang;Ju Sang Gyu;Song Ki Won;Park Young Hwan
The Journal of Korean Society for Radiation Therapy
/
v.9
no.1
/
pp.40-45
/
1997
When therapeutic irradiation is indicated for the orbital tumors, the greatest concern is the risk of radiation-induced cataract. Conjunctival lymphoma is one of the good examples. We would like to report the procedure of the lens shielding device(L.S.D) and the result of irradiated dose to the lens. L.S.D. consistes of two parts : load alloy to attenuate electron beam, and dental acryl which completely covers the lead alloy to avoid discomfort of cornea from contacting directly with cerrobend and side scattering by cerrobend. And for easy location and removal, side bars were made on each side. Radiation doses were meaured with TLD(TLD 3500 Hawshaw). Markus chamber in a polystyrene phantom. The phantom was irradiated with 9MeV electron beams from Clinac 2100C with $6{\times}6cm$ electron cone. The relative dose at 6mm depth where the lens is located was $4.2\%$ with TLD and $5.1\%$ with Markus chamber clinically when 2600 cGy are irradiated to the eyeball, the mapinary dose to the lens will be 109 cGy or 132 cGy, which will significently reduce the cataract.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.